Red de Nivelación de la República Argentina

Instituto Geográfico Nacional

Dirección de Geodesia

Año 2017

RESÚMEN

En el año 2010, el IGN inició un nuevo proyecto para llevar a cabo la determinación de las alturas sobre el nivel medio del mar de los 33891 pilares que componen la red de nivelación. Para ello, primeramente fue necesario digitalizar las planillas de observación de las líneas que componen la red de Alta Precisión. A partir de los desniveles geométricos y los valores de la aceleración de la gravedad observados sobre los pilares altimétricos, se determinaron 414 desniveles geopotenciales que vinculan a los 243 nodos que posee la red (en su mayoría puntos nodales). En aquellos casos en que los pilares carecían de observaciones gravimétricas, los valores de la gravedad fueron estimados utilizando el método de colocación por mínimos cuadrados.

Posteriormente, se realizó el control de cierre de los polígonos en función de los desniveles geopotenciales, con el propósito de hallar errores accidentales en las mediciones. A partir de este procedimiento, se determinó la necesidad de desestimar 27 líneas de la compensación. El ajuste de las líneas restantes se realizó mediante el método de mínimos cuadrados. En el ajuste se utilizaron dos orígenes geopotenciales distintos: el Nodal 71, localizado en la ciudad de Mar del Plata y cuyo número geopotencial $C_{\text{Nodal 71}}$ es igual 121,64978 m²s⁻², se utilizó para ajustar el sector continental; mientras que el PF1N(383), localizado en la ciudad de Ushuaia y cuyo número geopotencial $C_{\text{PF1N}(383)}$ es igual a 38,42700 m²s⁻², dio origen a la red localizada en la Isla Grande de Tierra del Fuego. Las 27 líneas que no se incluyeron en el cálculo anterior fueron ajustadas en una segunda etapa a la red principal que resultó del primer ajuste.

Luego de obtener los números geopotenciales de los 243 nodos que componen la red de Alta Precisión, se compensó individualmente cada una de las líneas de nivelación con el propósito de obtener los números geopotenciales de los 17915 pilares altimétricos. Seguidamente, se calculó la altura ortométrica de cada uno de los pilares aplicando el método propuesto por Mader (1954), que a diferencia del método presentado por Helmert (1890), remueve las irregularidades del terreno al considerar el exceso y el déficit de las masas topográficas sobre la placa de Bouguer para cada punto. Este procedimiento, denominado corrección topográfica, se calculó a partir del método descripto por Bott (1959) y el modelo digital de elevaciones SRTM_v4.1 (Jarvis et al., 2008). Las nuevas alturas ortométricas de los pilares que componen la red de Alta Precisión presentaron diferencias significativas respecto a las antiguas alturas oficiales, especialmente en las zonas cordilleranas. Las máximas diferencias se encuentran en la Puna (-2,258 m) y en la Patagonia (+0,785 m).

Con respecto a la determinación de las alturas de los pilares que pertenecen a líneas de ordenes inferiores (es decir, de Precisión y Topográficas), primeramente fue necesario digitalizar las planillas de observación correspondientes a las nivelaciones geométricas (2022 líneas). Luego, se llevaron a cabo un total de 106 ajustes de los polígonos que contenían líneas de Precisión y/o Topográficas mediante el método de mínimos cuadrados.

A partir de mediciones realizadas con receptores GPS diferenciales de doble frecuencia sobre aproximadamente 2250 puntos altimétricos, se determinaron los respectivos valores de ondulación geoidal, que posteriormente fueron comparados con la ondulación derivada del modelo geopotencial global EGM08. El desvío estándar de la diferencia entre ambos valores de ondulación geoidal resultó inferior a 0,30 m.

CONTENIDO

Resúme	n		i
Figuras.			iv
1. Intr	oduc	ción	1
1.1.	Ante	ecedentes Históricos	1
1.2.	Situ	ación Actual de la Red de Nivelación	4
1.3.	Mot	ivación y Objetivos	5
2. Mai	rco Te	eórico	7
2.1.	Cam	npo de Gravedad Terrestre	7
2.1.	1.	Potencial Gravitacional	7
2.1.	2.	Potencial Centrífugo	9
2.1.	3.	Potencial Gravitacional	10
2.1.	4.	Potencial Normal	11
2.1.	5.	Gravedad	11
2.1.	6.	Gravedad Normal	12
2.2.	Sist	emas de Alturas	12
2.2.	1.	Altura Elipsoidal	12
2.2.	2.	Altura Nivelada	13
2.2.	3.	Número Geopotencial	14
2.2.	4.	Altura Ortométrica	16
2.3.	Dati	um Vertical	19
3. Pro	cesar	niento	21
3.1.	Red	de Nivelación de Alta Precisión	21
3.1.	1.	Digitalización de las Planillas de Nivelación	21
3.1.	2.	Coordenadas de los Pilares Altimétricos	21
3.1.	3.	Interpolación de las Gravedades Faltantes	23
3.1.	4.	Corrección Topográfica	24
3.1.	5.	Determinación de Desniveles Geopotenciales	25
3.1.	6.	Detección de Errores Accidentales	29
3.1.	7.	Elección del Punto Datum	31
3.1.	8.	Ajustes por el Método de Mínimos Cuadrados	32
3.1.	9.	Determinación de Alturas Ortométricas Finales	36
3.2.	Red	de Nivelación de Precisión y Topográfica	37
3.2.	1.	Ajustes por el método de Mínimos Cuadrados	37
4. Aná	alisis	de los Resultados	39
4.1.	Dife	rencias respecto a los Antiguos Valores de la Red	39
4.2.	Con	ıparación con Modelo Geopotencial Global EGM08	39

5.	Conclusiones	11
Refe	erencias	42

FIGURAS

Fig. 1. Proyecto de la Red Fundamental de Alta Precisión de la República Argentina de 1923	2
Fig. 2. Proyecto de la red de nivelación de Alta Precisión de la República Argentina de 1946	2
Fig. 3. Monografía del PARN	3
Fig. 4. Unidad de procesamiento Honeywell 1800	3
Fig. 5. Primer ajuste de la red de nivelación de Alta Precisión realizado por la USATC en 1969.	4
Fig. 6. Red de nivelación de Alta Precisión de la República Argentina	4
Fig. 7. Cantidad de líneas de la red de Alta Precisión niveladas de acuerdo al año	5
Fig. 8. Punto altimétrico	5
Fig. 9. Nodal	5
Fig. 10. Componentes de la fuerza gravitacional (Hofmann-Wellenhof & Moritz, 2006)	8
Fig. 11: Diagrama de la fuerza centrífuga (Hofmann-Wellenhof & Moritz, 2006)	.10
Fig. 12. Esquema de la relación entre la gravedad y el potencial gravitacional (Vaníček et	al.,
2012)	.11
Fig. 13. Nivel óptico o equialtímetro (Fuente: http://www.speedyservices.com)	.13
Fig. 14. Miras graduadas (Fuente: http://www.northerntool.com)	.13
Fig. 15. Tiro de nivelación geométrica (Hofmann-Wellenhof & Moritz, 2006)	.14
Fig. 16. Dos rutas de nivelación distintas para conectar los puntos A y B (Hofmann-Wellenho)f &
Moritz, 2006)	.14
Fig. 17. Superficies geopotenciales y líneas de plomadas (Hofmann-Wellenhof & Moritz, 2006)	14
Fig. 18. Esquema del cálculo de un número geopotencial (Hofmann-Wellenhof & Moritz, 2006))15
Fig. 19. Esquema de la línea de la plomada (Hofmann-Wellenhof & Moritz, 2006)	.16
Fig. 20. Superficies equipotenciales líneas de la plomada (Hofmann-Wellenhof & Moritz, 2006)16
Fig. 21. Reducción de la gravedad sobre el geoide (Hofmann-Wellenhof & Moritz, 2006)	.17
Fig. 22. Corrección a la gravedad por la placa de Bouguer (Hofmann-Wellenhof & Moritz, 20	06)
	.17
Fig. 23. Corrección topográfica clásica utilizada para corregir las gravedades observa	das
(Hofmann-Wellenhof & Moritz, 2006)	.18
Fig. 24. Establecimiento de un punto fijo altimétrico (Sansò & Sideris, 2013)	.20
Fig. 25. Libretas de campo de la red de nivelación de Alta Precisión	.21
Fig. 26. Fragmento de planilla de cálculo digital de	.21
Fig. 27. Fragmento de una monografía de un pilar altimétrico de la red de nivelación de A	Alta
Precisión	.22
Fig. 28. Fragmento de un gráfico de recorrido de una línea de nivelación de la red de A	Alta
Precisión a escala 1:200.000	.22
Fig. 29. Líneas de la red de nivelación de Alta Precisión que han sido reconocidas	.23
Fig. 30. Puntos altimétricos medidos con GPS diferencial doble frecuencia	.23
Fig. 31. Tiempos mínimos de medición con GPS de acuerdo a la longitud de los vectores	.23
Fig. 32. Fragmento de polígono de nivelación medido. En color azul se observan las ba	ses
medidas 36-48 hs y procesadas con GAMIT. En color gris se observan los vectores procesa	dos
con GPPS.	.23
Fig. 33. Distribución espacial de puntos gravimétricos	.25
Fig. 34. Diagrama de la corrección topográfica utilizada	.25
Fig. 35. Cierres geométricos de polígonos de la red de nivelación de Alta Precisión	.31
Fig. 36. Cierres ortométricos de polígonos de la red de nivelación de Alta Precisión	.31
Fig. 37. Cierres ortométricos de polígonos de la red de nivelación de Alta Precisión luego	de
haber excluido líneas que presentaban errores accidentales	.31
Fig. 38. Fragmento de la monografía del Nodal 71 localizado en la Plaza Luro de la ciudad de M	Mar
del Plata	.32

1. INTRODUCCIÓN

1.1. ANTECEDENTES HISTÓRICOS

En el año 1913, el Instituto Geográfico Militar (IGM) – cuya denominación fuera sustituida por la de Instituto Geográfico Nacional (IGN) mediante el Decreto 554/09 – inició las labores geodésicas y topográficas tendientes a la construcción y medición de la red de nivelación de la República Argentina. Hacia fines del año 1919, el IGM había determinado las alturas provisorias de 1045 puntos (construidos por personal del IGM y de otras reparticiones) en las provincias de Buenos Aires y Santa Fe, a partir de la nivelación de 1620 km (Instituto Geográfico Militar, 1922).

Los trabajos de nivelación realizados hasta el año 1919 demostraron que "si bien se alcanzaba con ellos la precisión anhelada, no daban el rendimiento suficiente con relación al tiempo empleado y a la gran extensión del país, carente de bases altimétricas para sus obras públicas" (Instituto Geográfico Militar, 1928, p. 41). En ese marco, y con el propósito de proseguir los trabajos de nivelación en forma metódica y precisa, el IGM desarrolló un proyecto denominado Red Fundamental de Alta Precisión (ver Fig. 1), en el cual fueron considerados "el interés general del país y los propios de cada provincia" (Instituto Geográfico Militar, 1928, p. 41). Dicho proyecto, también incluyó la redacción de los reglamentos que estipulaban el método de construcción y medición de los pilares altimétricos.

Con respecto a la determinación del *datum vertical* (ver Sección 2.3), un trabajo publicado por el Ing. Geog. Mamelio Coliva manifestó lo siguiente: "entre los primeros y más urgentes trabajos que deberán ocurrir a la formación de la carta topográfica argentina, se hallan los que se refieren al nivel medio del mar [NMM], estudios que permitirán establecer la superficie de nivel fundamental, llamada también de comparación, horizonte de todas las nivelaciones y base de toda operación geodésica" (Instituto Geográfico Militar, 1912, p. 63). En ese sentido, y siendo que el IGM no poseía un mareógrafo, las cotas provisionales de los puntos altimétricos comenzaron a basarse en un origen (también denominado "cota cero") determinado por la Dirección General de Navegación y Puertos del Ministerio de Obras Públicas (MOP) a partir de una serie de observaciones realizadas con un mareógrafo localizado en el puerto de Mar del Plata. Esta información fue suministrada al IGM mediante un expediente del MOP con fecha 9 de septiembre de 1924 (Instituto Geográfico Militar, 1928).

El 18 de septiembre de 1941 se sancionó la Ley 12696 (también denominada Ley de la Carta), que establece entre sus artículos que el IGM es el responsable de ejecutar los "trabajos geodésicos fundamentales" necesarios para la confección de la cartografía del territorio Nacional. En este marco, y debido a que los polígonos de nivelación medidos hasta aquel entonces fueron considerados demasiado extensos y la separación entre sus puntos excesiva (ambas condiciones impuestas por razones económicas), el IGM resolvió: a) prescindir del conjunto de nivelaciones realizadas hasta el año 1945; b) iniciar nuevas operaciones previstas por la Ley de la Carta; y c) proyectar la construcción y medición de una nueva red de nivelación de Alta Precisión (ver Fig. 2) (Instituto Geográfico Militar, 1949). Estas operaciones fueron enmarcadas dentro de una serie de normas generales definidas en un compendio denominado Instrucciones Técnicas para la Ejecución de los Trabajos Geodésicos, entre las cuales cabe mencionar las siguientes (Instituto Geográfico Militar, 1946): a) los polígonos de la red de Alta Precisión debían tener un desarrollo perimetral de alrededor de 500 km (antiguamente de 1000 km); b) la separación entre los pilares debía ser de aproximadamente 2,6 km (en el año 1952 este valor fue llevado a 3,2 km); c) los errores de las nivelaciones debían calcularse a partir de las fórmulas recomendadas por la Asociación Internacional de Geodesia (IAG por sus siglas en inglés) luego de la Asamblea General celebrada en la ciudad de Edimburgo en el año 1936; d) tenían que utilizarse los método de medición fraccionada, con visuales horizontales de 50 m y nivel de anteojo con vidrio de caras plano-paralelas y lectura con micrómetro óptico sobre miras de invar con doble escala; y e) las discordancias entre dos nivelaciones ("en ida" y "en vuelta") no podían superar los siguientes valores:

$$\begin{split} \rho_{\max}[mm] &= 3\sqrt{L[km]} & \text{cuando la línea era de Alta Precisión} \\ \rho_{\max}[mm] &= 5\sqrt{L[km]} & \text{cuando la línea era de Precisión} \\ \rho_{\max}[mm] &= 7\sqrt{L[km]} & \text{cuando la línea era Topográfica} \end{split}$$
(1.1)

Fig. 1. Proyecto de la Red Fundamental de Alta Precisión de la República Argentina de 1923

Fig. 2. Proyecto de la red de nivelación de Alta Precisión de la República Argentina de 1946

En el año 1947, se vio la necesidad de erigir el Punto Altimétrico de Referencia Normal (PARN) para dar cumplimiento a la proyectada reglamentación de la Ley de la Carta. Para ello, se recabaron informes de la Dirección General de Minas y Geología, la Dirección General de Yacimientos Petrolíferos Fiscales y la Dirección de General del Servicio Meteorológico Nacional, que señalaron (desde el punto de vista sísmico-geológico) a la sierra de Tandil como un sitio favorable para el emplazamiento del PARN. En el mes de noviembre de 1949 se inició la excavación para materializar el PARN en el Parque Independencia de la ciudad de Tandil. Esta labor se extendió durante 59 días hasta llegar a una profundidad máxima de 16,4 metros (ver Fig. 3). Finalmente, en el año 1952 se vinculó el nodal construido en la Plaza Rocha de Mar del Plata con el PARN (Instituto Geográfico Militar, 1951).

En el año 1952, el IGM planteó la necesidad de compensar la red de nivelación de Alta Precisión teniendo presente las siguientes consideraciones: a) la nivelación debía servir tanto para las necesidades del desarrollo de la infraestructura del país, como también para investigaciones científicas; y b) para conservar la precisión alcanzada en la medición, se debía evitar cualquier condición que forzara la compensación. La solución a este problema se redujo a la aplicación de la resolución indeterminada de las ecuaciones normales, aunque su implementación no fue posible debido al gran número de ecuaciones y a la primitiva tecnología computacional de la

época. Para facilitar el cálculo, se propuso dividir la red de nivelación entera en grupos distribuidos en dos especies, los libres y los dependientes (Instituto Geográfico Militar, 1952).

En el año 1969, el IGM envió 179 líneas de Alta Precisión (~27300 km) y 262 líneas de Precisión (~24200 km) al Comando Topográfico del Ejército de los Estados Unidos (USATC por sus siglas en inglés) para que realizaran la compensación de la red y determinaran las alturas de los pilares que la componen. Se realizaron dos compensaciones diferentes (una con corrección ortométrica y otra sin ella) utilizando el método de mínimos cuadrados y una unidad de procesamiento Honeywell 1800 (ver Fig. 4). Los resultados finales fueron entregados al IGM en el año 1971 (Instituto Geográfico Militar, 1976). Las líneas construidas y medidas con posterioridad al año 1969 fueron ajustadas a la figura inicial definida por la USATC (ver Fig. 5) mediante un programa de compensación desarrollado por el IGM en lenguaje FORTRAN (D'Onofrio et al., 1999).

Fig. 4. Unidad de procesamiento Honeywell 1800

En el año 1997, en el marco del proyecto internacional Sistema de Referencia Geocéntrico para las Américas (SIRGAS) y en el transcurso de la Asamblea General de la IAG llevada a cabo en la ciudad de Río de Janeiro, se creó un grupo de trabajo denominado GTIII (o Datum Vertical), con el propósito de establecer un sistema de referencia vertical unificado para el continente americano. A partir del año 2001, el IGM y la Facultad de Ciencias Astronómicas y Geofísicas de la Universidad Nacional de La Plata (FCAG-UNLP) comenzaron a trabajar cooperativamente con el fin de obtener las alturas geopotenciales de los pilares altimétricos que componen la red de nivelación de Alta Precisión y, consecuentemente, contribuir con la misión del GTIII en el territorio Nacional (Moirano et al., 2002; Pacino et al., 2007).

En el año 2000, el Subcomité de Geodesia (SCG) del Comité Nacional de la Unión Geodésica y Geofísica Internacional (CNUGGI) conformó un grupo de trabajo denominado Origen Geopotencial, con el propósito de coordinar las actividades nacionales relativas al establecimiento de un nuevo sistema de referencia vertical e interactuar con el GTIII. Dentro del grupo se establecieron las siguientes líneas de trabajo: control del Datum Vertical mediante observaciones GPS y mareográficas, cálculo de desniveles geopotenciales, vinculación a las redes de nivelación limítrofes y definición de un estándar para compensar redes gravimétricas (Moirano et al., 2002; Pacino et al., 2007).

En este marco, y comprendiendo la necesidad de contar con un sistema de referencia altimétrico que contemple los efectos del campo gravitatorio terrestre, en el año 2010 el IGN inició un nuevo

proyecto con el propósito de reajustar la red de nivelación de Alta Precisión en función de desniveles geopotenciales y determinar las alturas ortométricas de los pilares que componen la red (ver Fig. 6).

Fig. 5. Primer ajuste de la red de nivelación de Alta Precisión realizado por la USATC en 1969

Fig. 6. Red de nivelación de Alta Precisión de la República Argentina

En los años 2012 y 2014, en las reuniones científicas de la Asociación Argentina de Geofísicos y Geodestas celebradas en las ciudades de San Miguel de Tucumán y San Juan respectivamente, personal del IGN presentó los avances del proyecto tendiente a la definición de un nuevo sistema de alturas Nacional (Piñón et al., 2014; Piñón et al., 2012).

1.2. SITUACIÓN ACTUAL DE LA RED DE NIVELACIÓN

La red de nivelación está compuesta actualmente por 2022 líneas de nivelación y 33891 pilares localizados a la vera de rutas, caminos y vías férreas. Las líneas se clasifican de acuerdo al siguiente criterio:

Alta Precisión (393 líneas, 17916 pilares y ~59630 km): Estas líneas dividen al territorio nacional en polígonos cerrados o mallas y en polígonos abiertos o periféricos (sobre el litoral marítimo o límites internacionales). Tienen su punto de arranque y cierre sobre puntos nodales o de primer orden. La precisión de estas líneas expresada en milímetros es igual a la raíz cuadrada de la longitud kilométrica multiplicada por un factor igual a 3, ver ecuación (1.1). Con respecto a los años de medición de las líneas de la red de Alta Precisión, los mismos son variados, habiéndose observado la primera línea en el año 1933 y la última en el 2016 (ver Fig. 7).

Fig. 7. Cantidad de líneas de la red de Alta Precisión niveladas de acuerdo al año

Precisión (329 líneas, 7908 pilares y ~32240 km): Estas líneas se desarrollan en el interior de las mallas generadas por las líneas de Alta Precisión y dividen a cada polígono en seis u ocho partes. Tienen su punto de arranque y cierre sobre pilares de las líneas de Alta Precisión (ver Fig. 8) o nodales (ver Fig. 9). La precisión de estas líneas expresada en milímetros es igual a la raíz cuadrada de la longitud kilométrica multiplicada por un factor igual a 5, ver ecuación (1.1).

Fig. 8. Punto altimétrico

Fig. 9. Nodal

 Topográficas (1298 líneas, 8068 pilares y ~52260 km): Estas líneas densifican las mallas. Tienen su punto de arranque y cierre sobre pilares de las líneas de Alta Precisión o Precisión. La precisión de estas líneas expresada en milímetros es igual a la raíz cuadrada de la longitud kilométrica multiplicada por un factor igual a 7, ver ecuación (1.1).

1.3. MOTIVACIÓN Y OBJETIVOS

La motivación del presente trabajo es la definición de un sistema vertical para la República Argentina basado en números geopotenciales, que tienda a la integración de las redes verticales de la región. Los objetivos principales del proyecto son los siguientes:

- Estimar los valores de la aceleración de la gravedad mediante el método de colocación por mínimos cuadrados de los puntos que carecen de esta información;
- Establecer un método para reducir las gravedades observadas sobre los pilares mediante la corrección topográfica;
- Definir un procedimiento apropiado para determinar los desniveles geopotenciales entre los puntos nodales de la red de nivelación de Alta Precisión;
- Realizar el ajuste de los desniveles geopotenciales mediante el método de mínimos cuadrados;

- Determinar la altura ortométrica para cada punto que compone la red de nivelación de Alta Precisión; y
- Determinar la altura ortométrica de los pilares que componen las redes de orden inferior (es decir, Precisión y Topográfica), a partir de una serie de ajustes por mínimos cuadrados (un ajuste por cada polígono de nivelación que contenga estas líneas).

2. MARCO TEÓRICO

El siguiente marco teórico está basado en un trabajo desarrollado por Piñón (2016).

2.1. CAMPO DE GRAVEDAD TERRESTRE

2.1.1. POTENCIAL GRAVITACIONAL

La fuerza que actúa sobre un cuerpo en reposo sobre la superficie de la Tierra es el resultado de las fuerzas gravitatorias y centrífugas producto de la rotación terrestre (Heiskanen & Moritz, 1967). La ley de gravitación enunciada por Newton en el año 1687 describe la fuerza de atracción *F* entre dos partículas de masas m_1 y m_2 de la siguiente forma:

$$F = -G \frac{m_1 m_2}{l^2}$$
(2.1)

donde G es la constante de gravitación universal, cuyo valor es aproximadamente 6.6742 10⁻¹¹ m³ kg⁻¹ s⁻² (Hofmann-Wellenhof & Moritz, 2006), y l es la distancia entre las dos partículas de masas m_1 y m_2 .

Al introducir un sistema de coordenadas cartesiano para una masa m y un punto de atracción P con coordenadas (x, y, z) (ver Fig. 10), las tres componentes del vector fuerza \overline{F} se pueden describir de la siguiente forma

$$-F\cos\alpha = -\frac{Gm}{l^2}\frac{x-\xi}{l} = -\frac{Gm}{l^3}(x-\xi)$$

$$-F\cos\beta = -\frac{Gm}{l^2}\frac{y-\eta}{l} = -\frac{Gm}{l^3}(y-\eta)$$

$$-F\cos\gamma = -\frac{Gm}{l^2}\frac{z-\varsigma}{l} = -\frac{Gm}{l^3}(z-\varsigma)$$

(2.2)

donde

$$l = \sqrt{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}.$$
(2.3)

Por otra parte, \overline{F} puede ser expresado en forma de vector

$$\overline{F} = -\frac{G m}{l^3} \{ (x - \xi)\hat{i} + (y - \eta)\hat{j} + (z - \varsigma)\hat{k} \} = -\frac{G m}{l^3} \hat{r}$$
(2.4)

donde \hat{i} , \hat{j} y \hat{k} representan el vector unitario del sistema de coordenadas en las tres direcciones.

Debido a que la circulación alrededor de cualquier curva cerrada dentro del campo de gravedad \overline{F} es igual a cero, la fuerza es *conservativa*, y por lo tanto, admite una función potencial que se denomina potencial gravitacional (*V*) y se expresa de la siguiente forma

$$V = \frac{G m}{l}.$$
(2.5)

Fig. 10. Componentes de la fuerza gravitacional (Hofmann-Wellenhof & Moritz, 2006)

En este sentido, el *trabajo* realizado para mover un objeto desde un punto a otro es independiente del camino y resulta igual a V. Las componentes de \overline{F} son

$$F\hat{\imath} = \frac{\partial V}{\partial x} ; \ F\hat{\jmath} = \frac{\partial V}{\partial y} ; \ F\hat{k} = \frac{\partial V}{\partial z}.$$
(2.6)

Entonces,

$$\overline{F} = \operatorname{grad} V = \nabla V \tag{2.7}$$

donde ∇V es denominado gradiente del potencial de gravitación de la función V y está dado por la siguiente ecuación

$$\nabla V = \left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right).$$
(2.8)

De este modo, el potencial de gravitación de un sistema de partículas $m_1, m_2 \dots m_n$ es igual

$$V = \frac{G m_1}{l_1} + \frac{G m_2}{l_2} + \dots + \frac{G m_n}{l_n} = G \sum_{i=1}^n \frac{m_i}{l_i}.$$
 (2.9)

De acuerdo a Torge (2001), la Tierra está compuesta por una cantidad infinita de partículas distribuidas en forma continua sobre un volumen v con una densidad igual a

$$\rho = \frac{dm}{dv} \tag{2.10}$$

donde dm y dv son diferenciales de elemento de masa y volumen respectivamente. Luego, el potencial de gravitación de un cuerpo sólido se puede calcular de la siguiente forma:

$$V = G \iiint_{\nu} \frac{dm}{l} = G \iiint_{\nu} \frac{\rho}{l} d\nu .$$
(2.11)

Además, la ampliación del teorema de Gauss indica (Mather, 1971)

$$\iint_{S} \overline{F} \cdot \hat{n} \, dS = \begin{cases} 0 & \text{no hay masa encerrada por la sup. S} \\ -4\pi G \iiint_{v} \rho \, dv & \text{toda la masa está encerrada dentro de la sup. S} \end{cases}$$
(2.12)

donde *S* es la superficie que contiene un volumen v, \overline{F} es la fuerza gravitacional, \hat{n} es el versor normal a la superficie *S* y *dS* es el diferencial de *S*.

Además, el teorema de la divergencia expresa lo siguiente:

$$\iint_{S} \overline{F} \cdot \hat{n} \, dS = \iiint_{v} \overline{\nabla} \cdot \overline{F} \, dv.$$
(2.13)

Remplazando la ecuación (2.7) dentro de la (2.13)

$$\iint_{S} \nabla V \cdot \hat{n} \, dS = \iiint_{v} \overline{\nabla} \cdot \nabla V \, dv. \tag{2.14}$$

Por otra parte, existe un operador denominado Laplace que se lo define como la divergencia ($\overline{\nabla} \cdot$) del gradiente (∇f), y está dado por la siguiente expresión:

$$\nabla^2 f = \overline{\nabla} \cdot \nabla f \tag{2.15}$$

donde f es una función real doblemente diferenciable.

Luego, la ecuación (2.14) puede escribirse de la siguiente forma:

$$\iint_{S} \nabla V \cdot \hat{n} \, dS = \iiint_{v} \nabla^2 V \, dv. \tag{2.16}$$

Finalmente, a partir de las ecuaciones (2.12) y (2.16) se puede obtener la siguiente fórmula de Poisson (Heiskanen & Moritz, 1967):

$$\nabla^2 V = -4\pi G\rho \tag{2.17}$$

que será verdadera para todos los puntos contenidos dentro de una superficie que encierre toda la Tierra. Luego, la función de la Laplace

$$\nabla^2 V = 0 \tag{2.18}$$

se cumplirá para todos los puntos que no estén contenidos dentro de la superficie que encierra la Tierra.

2.1.2. POTENCIAL CENTRÍFUGO

Cada punto de la superficie de la Tierra rota alrededor del eje *z* con una velocidad angular ω , y por lo tanto es afectado por una fuerza centrífuga \overline{F} (Heiskanen & Moritz, 1967), tal como se puede apreciar en la Fig. 11, luego

$$\overline{F} = m\omega^2 p \tag{2.19}$$

donde m es la masa de una partícula y p es la distancia desde la partícula hasta el eje z, que está dada por la siguiente expresión

Fig. 11: Diagrama de la fuerza centrífuga (Hofmann-Wellenhof & Moritz, 2006)

Para una unidad de masa P, la fuerza centrífuga \overline{F} es igual a

$$\overline{F} = \omega^2 (x_P \,\hat{\imath} + y_P \,\hat{\jmath}) \,. \tag{2.21}$$

Por otra parte, si se define un potencial centrífugo Q igual a

$$\overline{F} = -\nabla Q , \qquad (2.22)$$

Q puede expresarse como

$$Q = -\frac{1}{2}\omega^2(x^2 + y^2).$$
(2.23)

Finalmente, la ecuación de Laplace para el potencial centrífugo será la siguiente (Mather, 1971):

$$\nabla^2 Q = 2\omega^2 \,. \tag{2.24}$$

2.1.3. POTENCIAL GRAVITACIONAL

El potencial de la gravedad puede expresarse como

$$W = V + Q \tag{2.25}$$

donde *V* y *Q* corresponden a las ecuaciones (2.11) y (2.23) respectivamente.

Luego, el potencial total de un cuerpo rotando está dado de la siguiente forma (Mather, 1971):

$$\nabla^2 W = \nabla^2 V + \nabla^2 Q = \begin{cases} 2\omega^2 & \text{no hay masa encerrada por la sup. S} \\ -4\pi G\rho + 2\omega^2 & \text{toda la masa está encerrada dentro de S} \end{cases}$$
(2.26)

(2.20)

2.1.4. POTENCIAL NORMAL

La forma de la Tierra puede aproximarse a un elipsoide de revolución. La diferencia entre el campo de gravedad *normal* (asociado al elipsoide) y el campo de gravedad real es lo suficientemente pequeña para ser considerada lineal (Heiskanen & Moritz, 1967). Por lo tanto, el campo de gravedad terrestre puede separarse en un campo normal y otro perturbador.

El elipsoide es una superficie equipotencial del campo de gravedad normal. Al considerar la masa de la Tierra (M), la velocidad de rotación angular ω y los parámetros geométricos del elipsoide de revolución (semiejes a y b), se introduce el campo de gravedad normal (Torge, 2001), y su función potencial es

$$U = V + \frac{1}{2}\omega^2(x^2 + y^2).$$
 (2.27)

2.1.5. GRAVEDAD

La gravedad es la fuerza total que actúa sobre un cuerpo en reposo sobre la superficie terrestre, que deriva de los potenciales gravitacional y centrífugo (Heiskanen & Moritz, 1967). Además, el vector de la gravedad \overline{g} también puede definirse como la fuerza total que actúa sobre una unidad de masa, y puede expresarse como el gradiente del potencial gravitacional *W*

$$\overline{g} = \operatorname{grad} W = \nabla W = \left[\frac{\partial W}{\partial x}, \frac{\partial W}{\partial y}, \frac{\partial W}{\partial z}\right].$$
(2.28)

La Fig. 12 ilustra la relación que existe entre \overline{g} y W.

Fig. 12. Esquema de la relación entre la gravedad y el potencial gravitacional (Vaníček et al., 2012)

La dirección de \overline{g} es denominada *línea de la plomada*, y sus componentes se obtienen a partir de las ecuaciones (2.2) y (2.19)

$$\frac{\partial W}{\partial x} = -G \iiint_{v} \frac{x - \xi}{l^{3}} \rho dv + \omega^{3} x$$

$$\frac{\partial W}{\partial y} = -G \iiint_{v} \frac{y - \eta}{l^{3}} \rho dv + \omega^{3} y$$

$$\frac{\partial W}{\partial z} = -G \iiint_{v} \frac{z - \zeta}{l^{3}} \rho dv.$$
(2.29)

Por último, \overline{g} tiene unidades de aceleración (ms⁻²), que pueden expresarse en una unidad denominada *gal* en honor a Galileo Galilei

1 gal =
$$0.01 \text{ ms}^{-2}$$
 (2.30)
1 mgal = $10 \,\mu\text{ms}^{-2}$.

2.1.6. GRAVEDAD NORMAL

El vector de la gravedad normal (γ) es perpendicular al elipsoide de revolución y se puede definir de la siguiente forma:

$$\gamma = \operatorname{grad} U = \nabla U = \left[\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z}\right].$$
 (2.31)

De acuerdo a Moritz (1980b), γ puede expresarse a través de la fórmula cerrada de Somigliana (1929)

$$\gamma = \frac{a \gamma_e \cos^2 \varphi + b \gamma_p \sin^2 \varphi}{\sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}}$$
(2.32)

donde γ_e y γ_p son los valores de las gravedades en el ecuador y en los polos respectivamente, *a* y *b* son el semieje mayor y menor del elipsoide respectivamente, y φ es la latitud del punto en donde se quiere hacer el cálculo.

2.2. SISTEMAS DE ALTURAS

Un sistema de alturas es un sistema de coordenadas unidimensional que se utiliza para definir la distancia con respecto a una superficie de referencia de ciertos puntos, medida a lo largo de una trayectoria bien definida (Featherstone & Kuhn, 2006). Los sistemas de alturas pueden clasificarse en dos grupos: sistemas de alturas geométricas y sistemas de alturas físicas. Los primeros no están vinculados al campo de gravedad terrestre, mientras que los segundos sí lo están. Los líquidos o fluidos son atraídos por la fuerza de gravedad de la Tierra en lugar de las diferencias de altura. Es por ello que los sistemas de alturas físicas se utilizan para describir la dirección de escurrimiento de los fluidos. Existen diversos sistemas de alturas físicas de acuerdo al tratamiento de las gravedades y de la superficie de referencia (Featherstone & Kuhn, 2006). A continuación se describen los principales sistemas de alturas.

2.2.1. ALTURA ELIPSOIDAL

El Sistema de Posicionamiento Global (GPS por sus siglas en inglés) es un sistema de navegación desarrollado por el Departamento de Defensa de los Estados Unidos durante la década de 1970, y diseñado para suministrar información sobre posición y tiempo sobre cualquier punto de la superficie terrestre (El-Rabbany, 2006). Para una descripción detallada sobre el sistema GPS, sus estándares y las técnicas de medición se recomienda referirse a Seeber (2003) y Xu (2007).

El sistema GPS ha sido utilizado para proporcionar coordenadas cartesianas (x, y, z) precisas con respecto a un marco de referencia terrestre (Torge, 2001), por ejemplo, WGS84 (National Imagery and Mapping Agency, 1997). Un sistema de coordenadas cartesianas (x, y, z) puede transformarse en uno de coordenadas geodésicas (latitud φ , longitud λ y altura elipsoidal h) mediante la aplicación de fórmulas cerradas, siempre y cuando el origen del sistema de coordenadas cartesianas coincida exactamente con el centro geométrico del elipsoide que se adopte (Featherstone & Claessens, 2008). En caso que la coincidencia entre el origen del sistema

de coordenadas y el centro del elipsoide no sea posible, se podrán aplicar otros métodos de transformación.

Una altura elipsoidal se mide positivamente desde la superficie de referencia del elipsoide hasta el punto de interés a lo largo de la normal al elipsoide (Featherstone, 1998). En ese sentido, las alturas elipsoidales se definen en forma separada del campo de gravedad terrestre, y por lo tanto, no tienen sentido físico (Featherstone et al., 1998).

2.2.2. ALTURA NIVELADA

Cuando se practica una nivelación geométrica, las diferencias de altura son determinadas a partir de la descripción de visuales horizontales entre dos o más puntos próximos (Torge, 2001). La nivelación es conducida mediante un instrumento denominado nivel óptico o equialtímetro (ver Fig. 13, en la actualidad también existen instrumentos láser) y un par de miras graduadas o reglas (ver Fig. 14).

Fig. 13. Nivel óptico o equialtímetro (Fuente: http://www.speedyservices.com)

Fig. 14. Miras graduadas (Fuente: http://www.northerntool.com)

El desnivel δH_{AB} entre dos puntos A y B se determina mediante las lecturas l_1 y l_2 realizadas sobre las miras (ver Fig. 15) utilizando la siguiente fórmula:

$$\delta H_{AB} = l_2 - l_1 \tag{2.33}$$

En caso que el punto *A* fuera un mareógrafo, el resultado de la ecuación (2.33) sería igual a la altura sobre el NMM del punto *B*. La determinación del desnivel entre dos puntos separados por una distancia considerable (varios cientos de metros o más) se obtiene a partir de la sumatoria de los desniveles individuales (o parciales) calculados a partir de la ecuación (2.33):

$$\Delta H_{1,2} = \sum_{1}^{2} \delta H_i \tag{2.34}$$

donde 1 y 2 son los puntos de partida y llegada (separados por una distancia considerable), $\Delta H_{1,2}$ es el desnivel entre esos dos puntos y δH_i representa cada uno de los desniveles consecutivos que han sido observados.

Los niveles circulares y los compensadores automáticos incorporados en los equialtímetros y miras son utilizados para estacionar estos instrumentos, de modo de alinear u orientar sus ejes principales con la dirección de la línea de la plomada. Esta línea coincide con el vector de gravedad (ver Sección 2.1.5), que es perpendicular a la superficie geopotencial que pasa por dicho punto (Featherstone & Kuhn, 2006). En los circuitos cerrados de nivelación (ver Fig. 16), la sumatoria de todos los desniveles consecutivos δH_i determinada mediante la ecuación (2.34) generalmente no es igual a cero, sino que depende del camino recorrido en la nivelación (Heiskanen & Moritz, 1967). Esto se debe a la falta de paralelismo de las superficies

geopotenciales (ver Fig. 17). En otras palabras, debido a que el equialtímetro y las miras siempre están alineadas con la dirección de la gravedad local, los consecutivos desniveles observados (de acuerdo al sentido de avance de la nivelación) sufrirán diferentes orientaciones respecto a la línea de la plomada en cada sitio donde se estacionó el instrumental. Estas variaciones en las orientaciones se acumularán, resultando en un error de cierre en el circuito de nivelación (Featherstone & Kuhn, 2006).

Fig. 16. Dos rutas de nivelación distintas para conectar los puntos A y B (Hofmann-Wellenhof & Moritz, 2006)

Fig. 17. Superficies geopotenciales y líneas de plomadas (Hofmann-Wellenhof & Moritz, 2006)

2.2.3. NÚMERO GEOPOTENCIAL

De acuerdo a Featherstone y Kuhn (2006), todas las alturas físicas (también denominadas naturales) se basan en números geopotenciales. Un número geopotencial (C_P) es la diferencia en unidades de potencial (es decir, m²s⁻²) entre la superficie geopotencial W_0 (o geoide) y la superficie geopotencial de interés (W_P), y se expresa a través de la siguiente ecuación:

$$W_0 - W_P = C_P \,. \tag{2.35}$$

La superficie de potencial gravitacional constante *W* se llama equipotencial o superficie de nivel (Heiskanen & Moritz, 1967), es decir

$$W = W(x, y, z) = \text{constante}.$$
 (2.36)

La diferenciación de *W* está dada por la siguiente ecuación:

$$dW = \operatorname{grad} W \cdot dX = \overline{g} \cdot dX \tag{2.37}$$

donde

$$dX = [dx, dy, dz].$$

Si *dX* coincide con una ruta sobre la superficie equipotencial *W*, entonces

$$\overline{g} \cdot dX = 0. \tag{2.38}$$

Esto significa que el vector gravedad \overline{g} es ortogonal a la superficie equipotencial W en todo momento. Sin embargo, aunque las líneas de la plomada intersectan ortogonalmente todas las superficies geopotenciales, es importante notar que dichas líneas no son rectas, sino que ligeramente curvadas, y el vector gravedad \overline{g} es tangente a ellas en todo momento (ver Fig. 19) (Heiskanen & Moritz, 1967). Luego, el número geopotencial C_P se obtiene a partir de la integración de la gravedad a lo largo de la línea de la plomada que conecta el punto P con la superficie equipotencial W_0 (ver Fig. 20)

$$C_P = W_0 - \int_0^H g \, dh \tag{2.39}$$

donde *H* es la distancia entre W_0 y *P* a lo largo de la línea de la plomada, *dh* es el elemento infinitesimal de altura y *g* es la gravedad medida a lo largo de la línea de la plomada. Notar que el valor que surge de la diferencia entre dos superficies geopotenciales es independiente del camino de integración. Luego, un circuito de desniveles geopotenciales resulta

$$\oint g \, dh = 0 \,. \tag{2.40}$$

En la práctica, la función continua *g* es reemplazada con una serie discreta, de modo que la integral es aproximada a una sumatoria. De este modo, el número geopotencial de un punto *B* con respecto a un geopotencial de referencia W_A (conocido) puede determinarse utilizando una nivelación geométrica y observaciones de la gravedad, a partir de la sumatoria de las multiplicaciones entre los desniveles δH_i y el promedio entre dos gravedades consecutivas observadas sobre puntos nivelados (ver Fig. 18), tal como puede observarse a continuación:

$$C_B = W_A - W_B = \sum_{A}^{B} g_{\text{promedio}} \,\delta H_i \,. \tag{2.41}$$

Fig. 18. Esquema del cálculo de un número geopotencial (Hofmann-Wellenhof & Moritz, 2006)

plomada (Hofmann-Wellenhof & Moritz, 2006)

2.2.4. ALTURA ORTOMÉTRICA

De acuerdo a Featherstone y Kuhn (2006), la altura ortométrica (*H*) es la distancia medida a lo largo de la línea (curva) de la plomada desde el geoide hasta el punto de interés, y está dado por (Heiskanen & Moritz, 1967)

$$H = \frac{C}{\overline{g}} \tag{2.42}$$

donde \overline{g} es la gravedad media a lo largo de la línea de la plomada

$$\overline{g} = \frac{1}{H} \int_{0}^{H} g(h) \, dh \tag{2.43}$$

y g(h) es la gravedad para un punto con una altura H con respecto al geoide.

La determinación de \overline{g} a partir de la ecuación (2.43) no es trivial, ya que requiere estimar la distribución de la densidad de las masas y todos los valores *g* a lo largo de la línea de la plomada. Se han realizado diversos métodos y aproximaciones para determinar estas alturas. Uno de los métodos más populares fue desarrollado por Helmert (1890), y se basó en la reducción simplificada de Poincaré-Prey (Heiskanen & Moritz, 1967) y en la reducción propuesta por Bruns (1878), también conocida como el gradiente de la vertical de la gravedad:

$$\frac{\partial g}{\partial H} = -2g J + 4\pi G\rho - 2\omega^2 \tag{2.44}$$

donde g es la gravedad, H es la altura ortométrica, J es la curvatura promedio de la superficie equipotencial, G es la constante de gravitación universal de la Tierra, ρ es la densidad de masa de la Tierra y ω es la velocidad angular de la Tierra.

Para obtener las alturas ortométricas, las gravedades sobre la superficie de la Tierra deben ser reducidas al geoide. Considerando g como la gravedad medida sobre un punto P localizados en la superficie terrestre y g_0 la gravedad correspondiente al punto P_0 proyectado sobre el geoide (ver Fig. 21), g_0 puede expresarse mediante un serie de Taylor (Heiskanen & Moritz, 1967) de la siguiente forma:

$$g_0 = g - \frac{\partial g}{\partial H} H \dots$$
 (2.45)

donde el término $-\partial g / \partial H \times H$ es denominado reducción de aire libre (δg_{FA}), y permite asumir que no existen masas sobre el geoide.

Fig. 21. Reducción de la gravedad sobre el geoide (Hofmann-Wellenhof & Moritz, 2006)

Fig. 22. Corrección a la gravedad por la placa de Bouguer (Hofmann-Wellenhof & Moritz, 2006)

Para aplicaciones prácticas, suele utilizarse la siguiente aproximación (Heiskanen & Moritz, 1967)

$$\delta g_{FA} = -\frac{\partial g}{\partial H} H \cong -\frac{\partial \gamma}{\partial h} H \cong + 0.3086 H \text{ [mgal]}$$
(2.46)

donde $\partial \gamma / \partial h$ es denominado gradiente normal de la gravedad (referido al elipsoide), y varía levemente con respecto al gradiente vertical de la gravedad (referido al geoide) (Heiskanen & Moritz, 1967).

A continuación, se deben remover todas las masas que se encuentran sobre el geoide. Para ello, se debe reducir la gravedad observada nuevamente mediante una corrección denominada reducción de la placa de Bouguer (ver Fig. 22). De acuerdo a Heiskanen y Moritz (1967), esta reducción asume una placa horizontal, plana y circular alrededor del punto donde se mide la gravedad, que deriva de la ecuación (2.11) y determina un potencial *V* para un cilindro de radio infinito

$$\delta g_B = 2\pi G \rho H \,. \tag{2.47}$$

Si se utiliza un valor de densidad (ρ) estándar igual a 2,67 g cm⁻³, entonces

$$\delta g_B = 0.1119 \, H \, [\text{mgal}] \,. \tag{2.48}$$

Luego, para calcular \overline{g} en la ecuación (2.43) mediante una aproximación se deben llevar a cabo los siguientes pasos (Heiskanen & Moritz, 1967):

- a. Remover todas las masas sobre el geoide para sustraer el efecto de atracción sobre la gravedad observada *g*;
- b. Aplicar la corrección de aire libre utilizando la ecuación (2.46); y
- c. Restaurar las masas removidas en el primer paso.

Luego de efectuar el paso b, la gravedad corregida estará dada por (Heiskanen & Moritz, 1967)

$$\overline{g}^{\text{Helmert}} = g - \left(\frac{1}{2}\frac{\partial\gamma}{\partial h} + 2\pi G\rho\right)H = g + 0.0424 H.$$
(2.49)

Entonces, la altura ortométrica será

$$H^{\text{Helmert}} = \frac{C}{\overline{g}^{\text{Helmert}}} = \frac{C}{g + 0.0424 H}$$
(2.50)

donde *C* es el número geopotencial.

El método de Helmert puede ser refinado si se considera el efecto de la topografía del terreno sobre la placa de Bouguer (ver Fig. 23). Este proceso de refinamiento es denominado corrección topográfica clásica (C_T) y resulta siempre positiva (Mader, 1954). A continuación se presenta una aproximación lineal de esta corrección presentada por Moritz (1968):

$$C_T = \frac{G\rho}{2} \iint\limits_{\sigma} \frac{(H - H_P)^2}{l^3} d\sigma$$
(2.51)

donde *H* es la altura ortométrica del punto para el cual se está determinando C_T , H_P es la altura del punto de integración *P*, $d\sigma$ es el elemento infinitesimal de superficie, y *l* es la distancia plana desde el punto *P*.

Finalmente, la aproximación propuesta por Mader (1954) es

$$\overline{g}^{\text{Mader}} = g - \left(\frac{1}{2}\frac{\partial\gamma}{\partial h} + 2\pi G\rho\right)H + \frac{C_T}{2} = g + 0.0424 H + \frac{C_T}{2}, \qquad (2.52)$$

y la altura ortométrica refinada (o de Mader) está dada por la siguiente expresión

$$H^{\text{Mader}} = \frac{C}{\overline{g}^{\text{Mader}}} = \frac{C}{g + 0.0424 H + \frac{C_T}{2}}.$$
(2.53)

Fig. 23. Corrección topográfica clásica utilizada para corregir las gravedades observadas (Hofmann-Wellenhof & Moritz, 2006)

Existen algunos argumentos en contra del uso de las alturas ortométricas. El principal, ha sido formulado por Molodensky (1945) y establece que la densidad de las masas topográficas (necesaria para determinar este tipo de alturas) no puede establecerse en forma precisa. En ese sentido, Molodensky formuló una nueva teoría, la de las alturas normales. Estas últimas están referidas al cuasigeoide, superficie que carece de sentido físico, a diferencia del geoide.

De acuerdo a Vanícek et al. (2003, p. 84), "la altura ortométrica, y como consecuencia, el geoide, pude obtenerse tan exactamente como la altura normal y el cuasigeoide". Consecuentemente, proponen "usar una [altura] que respete la física y satisfaga los requerimientos prácticos y científicos".

2.3. DATUM VERTICAL

Si se consideran a las alturas de puntos sobre el terreno como coordenadas verticales, el datum vertical puede ser definido como la superficie de referencia a la cual están referidas dichas alturas (Vanicek, 1991). Para materializar una red de nivelación Nacional o regional, las agencias responsables de llevar a cabo dicha labor deberán cumplir lo siguiente (Featherstone & Kuhn, 2006):

- a. Seleccionar un sistema de alturas apropiado y aplicar las correcciones que correspondan a las nivelaciones geométricas;
- b. Definir al menos una referencia vertical (es decir, una altura o número geopotencial de un punto fijo) antes de llevar a cabo el ajuste de la red por el método de mínimos cuadrados. Este punto de referencia define la denominada *elección del datum vertical* de la red de nivelación (Rummel & Teunissen, 1988); y
- c. Realizar un ajuste por el método de mínimos cuadrados de los desniveles observados (de ser posible, deberán utilizarse los desniveles geopotenciales).

En base al sistema de alturas seleccionado (ver Sección 2.2), es posible identificar tres tipos de referencias verticales: el geoide (como la superficie de referencia de las alturas ortométricas), el cuasigeoide (como la superficie de referencia de las alturas normales) y el elipsoide (como la superficie de referencia de las alturas normales) y el elipsoide (como la superficie de referencia de las alturas elipsoidales). Dado que el geoide es la superficie de nivel que describe el campo de gravedad de la Tierra y que el concepto *geoide* es "comprendido intuitivamente por todos" (Vanicek, 1991, p. 83), esta superficie ha sido adoptada como referencia vertical en gran cantidad de países. Sin embargo, existe un número infinito de superficies de nivel que describen el campo de gravedad terrestre, y por lo tanto, es necesario identificar cuál de ellas se utilizará como la referencia vertical. Básicamente, existen dos alternativas prácticas para definir el datum vertical de la red de nivelación:

- a. Alternativa abstracta: definir arbitrariamente un valor constante del potencial de gravedad terrestre (por ejemplo, W_0); y
- b. Alternativa geométrica: aproximar una superficie de referencia (por ejemplo, el geoide) al NMM.

La mayoría de los países (o regiones) han optado por la segunda opción, y por lo tanto, sus datums verticales han sido definidos mediante el promedio de observaciones del nivel del mar en mareógrafos o escalas hidrométricas. Hace algunas décadas atrás, se asumía que el NMM local (es decir el registrado por un mareógrafo) coincidía con el geoide (Sansò & Sideris, 2013). Sin embargo, en la actualidad es bien conocido que las diferencias entre el NMM local y el geoide pueden alcanzar los 2 metros (Rapp & Balasubramania, 1992). Esta separación es producto de la dinámica del mar y de otros procesos meteorológicos (tales como el viento y las corrientes oceánicas) y se denomina topografía de la superficie del mar (SST, por sus siglas en inglés) (Vanicek, 1991).

La SST puede descomponerse en dos partes: una variación permanente (o cuasi-permanente), constante dentro del período en el cual se la ha considerado, y otra variación periódica (o dependiente del tiempo) (Heck & Rummel, 1990). La mayor parte de las variaciones periódicas pueden promediarse y estimarse utilizando filtros apropiados. Con respecto a las variaciones que no son cíclicas, las mismas deben ser consideradas para la determinación de la SST en la época para la que se calcula el NMM (Balasubramania, 1994).

Esto conduce al siguiente concepto: el punto datum es dependiente del tiempo y es determinado a partir de lecturas realizadas en al menos un mareógrafo durante un período de tiempo específico, y reducidas a una cierta época dentro del mismo intervalo de tiempo (Balasubramania, 1994). Sin embargo, en la actualidad esta teoría todavía no ha sido puesta en práctica, y por lo tanto, la mayor parte de los datums verticales están basados en la determinación local del NMM para distintas épocas y utilizando distintos procedimientos. De acuerdo a Sansò y Sideris (2013), para definir una altura con respecto al NMM se deben llevar a cabo los siguiente pasos (ver Fig. 24):

- a. Registrar en forma continua observaciones instantáneas del nivel del mar (*H*_{ISL});
- b. Promediar todas las observaciones H_{ISL} durante cierta cantidad de tiempo para obtener el NMM local;
- c. Medir el desnivel entre un punto fijo y el mareógrafo (ΔH_{ref-TG}); y
- d. Calcular la altura del punto fijo (H_{ref}) a partir de la siguiente ecuación

$$H_{ref} = H_{MSL} - \Delta H_{ref-TG} \,. \tag{2.54}$$

Debido a que las mareas están estrechamente relacionadas con la nutación Terrestre, proceso que requiere 18,6 años para completar un ciclo completo (Melchior, 1983), las observaciones que registran los mareógrafos deben ser promediadas la misma cantidad de tiempo para obtener el valor del NMM. Sin embargo, debe notarse que el efecto local de la SST no se puede eliminar con la ecuación (2.54), ni siquiera luego de haber corregido todas las variables dependientes del tiempo, tales como olas, efectos de marea, presión atmosférica, viento, corrientes oceánicas, temperatura y salinidad del agua (Torge, 2001).

Fig. 24. Establecimiento de un punto fijo altimétrico (Sansò & Sideris, 2013)

De acuerdo a Pugh (1996), el cálculo mensual y anual del NMM a partir de observaciones mareográficas de tasa horaria es una práctica normal en las agencias o instituciones relacionadas con el monitoreo del nivel del mar. Existen diversos métodos para determinar el NMM local, así como también para eliminar las variaciones de corto plazo generadas por las mareas y el oleaje. Los principales procedimientos son los siguientes (Pugh, 1996):

- a. La media aritmética: es la forma más sencilla para calcular el NMM. Las lecturas horarias del nivel del mar observadas durante un mes se suman y luego dividen por el número de horas en el mes. El nivel del mar anual puede obtenerse a partir de una media ponderada de los niveles mensuales, en función del número de días de cada mes.
- b. El método del valor promedio filtrado por paso-bajo: se utiliza para evitar las variaciones de alta frecuencia del nivel del mar durante períodos cortos de tiempo del promedio de las observaciones. Mediante la aplicación de un filtro numérico de paso-bajo a las lecturas horarias de mareógrafos, se obtienen valores diarios suavizados para el cálculo del promedio mensual.
- c. La técnica del nivel medio de la marea: consiste en un promedio de todos los niveles altos y bajos del mar observados durante cierto período de tiempo. Esta técnica no permite determinar el NMM debido a la influencia de los armónicos de la marea en aguas poco profundas.

3. PROCESAMIENTO

En esta Sección se describen los procedimientos empleados para realizar la compensación de la red de nivelación de Alta Precisión en términos de números geopotenciales, la determinación de las alturas ortométricas de los pilares altimétricos de la red de Alta Precisión y el cálculo de las alturas de los pilares pertenecientes a las redes de nivelación de ordenes inferiores, es decir de Precisión y Topográficas.

3.1. RED DE NIVELACIÓN DE ALTA PRECISIÓN

3.1.1. DIGITALIZACIÓN DE LAS PLANILLAS DE NIVELACIÓN

En el año 2010, el IGN inició el proceso de búsqueda, organización, puesta en valor y digitalización de todas las planillas de nivelación que contenían las observaciones realizadas en el terreno (ver Fig. 25). Estas libretas, mayormente manuscritas, se volcaron en planillas de cálculo digitales (ver Fig. 26), con el propósito de determinar los desniveles geopotenciales.

Fig. 25. Libretas de campo de la red de nivelación de Alta Precisión

					Línea	N(194) - D	ESDE ME	RCEDES -	HASTA V	ICUÑA N	
						Año de	medición:	1965 - Op	erador: M	.Ornstein	
Número		г	ESNIVELES				DISTANCIAS				
de		_									
Punto	IDA	VUELTA	IDA-VUE	PTO. DE	PROM.	IDA	VTA	IDA-VUE	PROM	SUMA	
Fijo	[m]	[m]	[m]	REF.	[m]	[m]	[m]	[m]	[m]	[m]	
NODAL 120	0.00000	0.00000	0.00000	1	0.00000	0	0	0	0	0	
1	-5.98950	5.98753	-0.00197	P	-5.98851	3318	3317	1	3318	3318	
2	-5.12133	5.12063	-0.00070	P	-5.12098	2924	2924	0	2924	6242	
3	-5.66228	5.66083	-0.00145	P	-5.66155	2986	2985	1	2986	9228	
4	-2.99278	2.99513	0.00235	P	-2.99395	3299	3296	3	3298	12526	
5	-10.49068	10.48845	-0.00222	P	-10.48956	2905	2903	2	2904	15430	
6	-6.81673	6.81860	0.00188	P	-6.81766	3126	3113	13	3120	18550	
7	-8.32360	8.32468	0.00107	P	-8.32414	3008	3005	3	3006	21556	
8	-10.34763	10.34948	0.00185	P	-10.34855	3065	3062	3	3064	24620	
9	-12.64638	12.64793	0.00155	P	-12.64715	3034	3033	1	3034	27654	
10	-5.56775	5.56778	0.00002	P	-5.56776	2922	2923	-1	2922	30576	
11	-10.58133	10.58110	-0.00023	P	-10.58121	2986	2984	2	2985	33561	
12	-7.81315	7.81398	0.00082	P	-7.81356	3002	3000	2	3001	36562	
13	-5.87223	5.87168	-0.00055	P	-5.87195	2864	2865	-1	2864	39426	
14	-8.94393	8.94458	0.00065	P	-8.94425	3026	3028	-2	3027	42453	
15	-8.01625	8.01673	0.00047	P	-8.01649	3035	3033	2	3034	45487	
16	-5.98880	5.98928	0.00047	P	-5.98904	2887	2886	1	2886	48373	
17	-5.34380	5.34218	-0.00162	P	-5.34299	2937	2937	0	2937	51310	
18	-7.01618	7.01848	0.00230	P	-7.01733	3023	3023	0	3023	54333	
19	-5.23525	5.23605	0.00080	P	-5.23565	3090	3090	0	3090	57423	
20	-5.75478	5.75385	-0.00093	P	-5.75431	2958	2958	0	2958	60381	
21	-7.12593	7.12590	-0.00002	P	-7.12591	3150	3150	0	3150	63531	
22	-8.57095	8.56990	-0.00105	P	-8.57043	2853	2854	-1	2854	66385	
23	-5 95378	5 95173	-0.00205	P	-5 95275	3041	3041	0	3041	69426	

Fig. 26. Fragmento de planilla de cálculo digital de

Además de digitalizar los desniveles geométricos observados, se volcaron las distancias lineales que separan a pilares altimétricos consecutivos y que derivan indirectamente de la lectura de los hilos estadimétricos sobre las miras.

3.1.2. COORDENADAS DE LOS PILARES ALTIMÉTRICOS

En sus orígenes, la red de nivelación fue concebida para brindar información altimétrica precisa de los puntos que la componen, y la ubicación de los pilares respondía a los siguientes criterios: a) capacidad de optimizar la compensación de la red; b) uniformidad en la distribución de los puntos en la cartografía; c) estabilidad del terreno; d) accesibilidad a la zona de trabajo; y e) perdurabilidad en el tiempo.

Debido a que los puntos altimétricos carecían (hasta hace algunos años atrás) de coordenadas, la localización de los mismos sobre el terreno se llevaba a cabo a partir de la siguiente documentación: a) monografías o croquis con la localización relativa de los puntos (ver Fig. 27), b) gráficos del recorrido de las líneas de nivelación (ver Fig. 28); y c) cartas topográficas.

Fig. 27. Fragmento de una monografía de un pilar altimétrico de la red de nivelación de Alta Precisión

Fig. 28. Fragmento de un gráfico de recorrido de una línea de nivelación de la red de Alta Precisión a escala 1:200.000

Sin embargo, el advenimiento de la tecnología de posicionamiento satelital (GPS) favoreció considerablemente la determinación de las coordenadas de los pilares altimétricos. En el año 2010, el IGN inició un nuevo proyecto con el propósito de sistematizar el reconocimiento de todas las líneas de nivelación que componen la red de Alta Precisión. Los objetivos principales del proyecto fueron los siguientes: a) determinar las coordenadas absolutas de los pilares altimétricos mediante el uso de navegadores GPS (precisión de las coordenadas 5-15 m); b) determinar el estado constructivo de los pilares; y c) generar un plan de acción para medir los pilares reconocidos en forma precisa mediante el uso de equipos GPS diferenciales de doble frecuencia. A la fecha, se ha reconocido aproximadamente el 88% de las líneas de Alta Precisión existentes (ver Fig. 29).

Por otra parte, en el año 2011, el IGN abordó un nuevo proyecto tendiente a la generación de un modelo de geoide para la República Argentina: la determinación de coordenadas precisas (en el marco de referencia geodésico oficial POSGAR07) de pilares altimétricos pertenecientes a la red de nivelación de Alta Precisión. Para ello, se definió una estrategia de medición basada en el uso de 5-6 equipos GPS de doble frecuencia que operan en forma simultánea (en modo estático) y respetan los tiempos de observación mínimos que se describen en la Fig. 31. El procesamiento de las observaciones se llevó a cabo mediante los programas GPPS (para vectores de hasta 30 km) y GAMIT (para las bases que registran datos durante 36-48 hs), mientras que el ajuste de los vectores se efectuó con los programas FILLNET (Ashtech Inc., 1989) y GLOBK (Herring et al., 2010). En la Fig. 32 se puede apreciar la geometría de los vectores medidos en el polígono de nivelación 112 de la provincia de Córdoba. A la fecha de la redacción de este informe, el proceso de medición y cálculo descripto anteriormente permitió obtener coordenadas con precisiones centimétricas de ~2000 pilares altimétricos (ver Fig. 30), que sumados a otras mediciones realizadas con anterioridad por el IGN y otras agencias, arroja un total de 2253 puntos.

Por último, con respecto a los pilares que no pudieron ser medidos o reconocidos con GPS, sus coordenadas (aproximadas) fueron determinadas a partir de un trabajo de interpretación de monografías, gráficos de línea, cartografía histórica e imágenes satelitales. Mediante esta técnica, se ha logrado obtener precisiones de una o dos centenas de metros.

medido. En color azul se observan las bases medidas 36-48 hs y procesadas con GAMIT. En color gris se observan los vectores procesados con GPPS.

3.1.3. INTERPOLACIÓN DE LAS GRAVEDADES FALTANTES

De acuerdo a Sánchez (2002), el error en la determinación de los números geopotenciales producto de aplicar la ecuación (2.41) es una función de los desniveles (Δh) y las gravedades (g) observados y sus respectivos errores ($m_{\Delta h}$ y m_g), y responde a la siguiente ecuación;

$$m_C^2 = g^2 m_{\Delta h}^2 + \Delta h^2 m_g^2 \tag{3.1}$$

donde $m_{\Delta h}$ corresponde a la ecuación (1.1).

Por otra parte, con el propósito de minimizar la influencia de las gravedades en la precisión de las alturas ortométricas calculadas, Sánchez (2002) propone introducir una nueva condición: el error de los números geopotenciales producto de la precisión de los valores de gravedad deberá ser 100 veces menor que el ocasionado por los desniveles medidos, es decir

$$g^2 m_{\Delta h}^2 > \Delta h^2 m_q^2 \times 100 \,. \tag{3.2}$$

En la Tabla 1 se describen las precisiones gravimétricas que deberán tener dos puntos altimétricos consecutivos separados ~3.400 m (distancia promedio entro los puntos de la red de Alta Precisión) para satisfacer la condición planteada en la ecuación (3.2) de acuerdo a la altura sobre el NMM a la cual han sido nivelados.

H en el cual se mide el desnivel [m]	m_g [mgal]
10	553,2
50	110,6
100	55,3
500	11,1
1000	5,5
2000	2,8
3000	1,8
4000	1,4

Tabla 1: Precisiones de valores de gravedad requeridaspara determinar números geopotenciales

De acuerdo a los resultados de la Tabla 1, mientras mayor sea la altura a la cual se mida un desnivel entre dos puntos altimétricos consecutivos, mayor deberá ser la precisión de sus gravedades para respetar las tolerancias propuestas en la ecuación (1.1).

Con respecto a las gravedades de los pilares altimétricos de la red de Alta Precisión (requisito para la determinación de sus alturas ortométricas, tal como ha sido demostrado en la Sección 2), existen 3064 puntos (~17%) que carecen de estos valores. Para estimar los mismos, se utilizó el programa PREDGRAV (Drewes, 1978), provisto por SIRGAS, y que aplica una variante del método de colocación por mínimos cuadrados (LSC por sus siglas en inglés) propuesta por Moritz (1962, 1980a). La matriz covarianza necesaria en la LSC se determinó en forma empírica a partir de una serie de ~650000 puntos con gravedades conocidas (ver Fig. 33) que conforman la base de datos gravimétrica del IGN.

3.1.4. CORRECCIÓN TOPOGRÁFICA

La corrección topográfica (ver Sección 2.2.4) utilizada para refinar las gravedades de los pilares que componen la red de Alta Precisión se basó en el modelo digital de elevaciones SRTM (Jarvis et al., 2008) y el método propuesto por Bott (1959), que aproxima un prisma a un cilindro vertical hueco y que tiene la siguiente forma:

$$C_T = \sum \rho G \alpha \left(r_{i+1} - r_i + \sqrt{r_i^2 + \Delta h_i^2} - \sqrt{r_{i+1}^2 + \Delta h_i^2} \right)$$
(3.3)

donde ρ es la densidad de las masas terrestres (se aplicó el valor 2,67 g cm⁻²), *G* es el valor de gravitación universal propuesto por el Comité Internacional de Datos para la Ciencia y Tecnología en el año 2006 (6,674428 × 10⁻¹¹ m³kg⁻¹s⁻²), α es el paso angular (se utilizó un valor de 1°), r_{i+1} y r_i son el radio interior y exterior del cilindro respectivamente y componen el paso lineal utilizado en los cálculos (se utilizó un valor de 100 m hasta una distancia máxima de 167

km), y Δh_i es el desnivel entre el punto gravimétrico y el centro de una celda del modelo digital de elevaciones (ver Fig. 34).

Fig. 33. Distribución espacial de puntos gravimétricos

3.1.5. DETERMINACIÓN DE DESNIVELES GEOPOTENCIALES

A partir de los desniveles geométricos correspondientes a las 393 líneas de nivelación de Alta Precisión y los valores de la aceleración de la gravedad observados (o interpolados) correspondientes a los pilares que componen dicha red, se aplicó la ecuación (2.41) para determinar las diferencias de potencial entre los nodos de la red. Debido a la geometría de la misma, algunas líneas debieron segmentarse en dos o más trozos, y por lo tanto, algunos nodos no coinciden con los puntos nodales (o de orden cero), sino que corresponden a pilares altimétricos de primer orden. Por ejemplo, la línea N(248) debió segmentarse en dos tramos: a) desde el Nodal 29 hasta el punto PF72N(248); y b) desde el pilar PF72N(248) hasta el Nodal 23.

En la Tabla 2 se pueden observar las 414 diferencias de potencial medidas entre los nodos (y sus correspondientes distancias) que conforman la red de Alta Precisión.

N° línea	Nodo inicio	Nodo fin	Δ Pot. [m ² s ⁻²]	Dist. [m]	N° línea	Nodo inicio	Nodo fin	Δ Pot. [m ² s ⁻²]	Ι
N(1)	Nodal 133	Nodal 151	-37,9506	188937	N(12)	Nodal 90	Nodal 87	-500,7330	15
N(2)	Nodal 151	Nodal 150	644,8141	124413	N(13)	Nodal 112	Nodal 119	1187,0771	16
N(3)	Nodal 138	Nodal 150	-261,5479	152673	N(14)	Nodal 119	Nodal 132	2904,5180	13
N(4)	Nodal 133	Nodal 138	867,9894	115778	N(15)	Nodal 112	Nodal 97	-21,0471	17
N(5)	Nodal 112	Nodal 133	-49,0773	198572	N(16)	Nodal 98	Nodal 86	92,3200	22
N(6)	Nodal 150	Nodal 149	2112,4394	102962	N(17)	Nodal 112	Nodal 111	-274,3205	12
N(7)	Nodal 123	Nodal 138	562,3445	117116	N(18)	Nodal 119	Nodal 105	-729,4417	14
N(8)	Nodal 138	Nodal 149	1850,9195	149119	N(19)	Nodal 111	Nodal 98	158,2989	10
N(9)	Nodal 132	Nodal 149	-1421,7214	175576	N(20)	Nodal 86	Nodal 87	1,3204	14
N(10)	Nodal 112	Nodal 123	255,9124	127778	N(21)	Nodal 87	Nodal 97	1,5940	12
N(11)	Nodal 123	Nodal 132	3834,4627	161420	N(22)	Nodal 97	Nodal 105	479,0118	11

Tabla 2: Diferencias de potencial y distancias entre los nodos que componen la red de Alta Precisión.

N°	Nodo	Nodo	Δ Pot.	Dist.	N°	Nodo	Nodo	Δ Pot.
línea	inicio	fin Nadal 07	[m ² s ⁻²]	[m]	línea	inicio	fin N-d-1120	[m ² s ⁻²]
N(23)	Nodal 98	Nodal 97	95,0860	142446	N(76)	Nodal 121	Nodal 128	-30,6374
N(24)	Nodal 105	Nodal 90	20,5461	157076	N(77)	Nodal 158	Nodal 173	1/8,2209
N(25)	Nodal 90	Nodal 74	/19,0510	15/0/6	N(78)	Nodal 101	Nodal 100	119,1793
N(20)	Nodal 74	Nodal 83	-419,8699	115086	N(79)	Nodal 100	Nodal 109	96,0050
N(27)	Nodal 87	Nodal 83	799,5388	154397	N(80)	Nodal 109	Nodal 110	311,0943
N(28)	Nodal 83	Nodal 75	390,3640	136524	N(81)	Nodal 108	Nodal 109	155,2239
N(29)	Nodal 75	Nodal 86	-1191,////	141896	N(82)	Nodal 140	Nodal 134	-136,9676
N(30)	Nodal 83	Nodal 67	-1/62,3433	163876	N(83)	Nodal 101	Nodal 108	59,7417
N(31)	Nodal 67	Nodal 68	900,1265	94866	N(84)	Nodal 117	Nodal 116	-30,3001
N(32)	Nodal 68	Nodal 75	1252,1440	205330	N(85)	Nodal 100	Nodal 99	219,9889
N(33)	Nodal 68	Nodal 69	-6,8494	105548	N(86)	Nodal 100	Nodal 95	64,3240
N(34)	Nodal 69	Nodal 76	1531,0297	139744	N(87)	Nodal 140	Nodal 144	126,3532
N(35)	Nodal 76	Nodal 84	-997,1633	67623	N(88)	Nodal 144	Nodal 143	-343,7496
N(36)	Nodal 75	Nodal 84	-724,8517	163104	N(89)	Nodal 131	PF13N(89)	12463,7619
N(37)	Nodal 69	Nodal 70	-269,9921	163643	N(90)	Nodal 225	Nodal 230	503,6818
N(38)	Nodal 77	Nodal 70	-1130,7852	125787	N(91)	Nodal 230	Nodal 232	535,3583
N(39)	Nodal 76	Nodal 77	-670,1381	101273	N(92)	Nodal 129	Nodal 131	11051,8321
N(40)	Nodal 70	Nodal 71	-664,5498	148046	N(93)	Nodal 162	Nodal 172	-154,2006
N(41)	Nodal 71	Nodal 78	108,1163	116117	N(94)	Nodal 173	Nodal 172	150,8815
N(42)	Nodal 77	Nodal 78	-1687,3325	125737	N(95)	Nodal 126	Nodal 134	451,9438
N(43)	Nodal 78	Nodal 89	-133,4309	98703	N(96)	Nodal 135	Nodal 118	-67,1119
N(44)	Nodal 95	Nodal 89	-247,9529	146338	N(97)	Nodal 126	Nodal 143	371,2358
N(45)	Nodal 95	Nodal 77	1572,7080	179670	N(98)	Nodal 126	Nodal 135	-11,8497
N(46)	Nodal 94	Nodal 95	-188,7903	99234	N(99)	Nodal 142	Nodal 135	-574,9110
N(47)	Nodal 84	Nodal 94	-1056,5476	114902	N(100)	Nodal 143	Nodal 142	191,7748
N(48)	Nodal 86	Nodal 94	-589,7217	200652	N(101)	Nodal 166	Nodal 165	2469,4412
N(49)	Nodal 128	Nodal 133	281,6907	70819	N(102)	Nodal 157	Nodal 144	404,6581
N(50)	Nodal 128	Nodal 152	-242,5337	197939	N(103)	Nodal 161	Nodal 143	-160,6575
N(51)	Nodal 151	Nodal 152	-486,1453	80132	N(104)	Nodal 142	Nodal 159	-49,0167
N(52)	Nodal 128	Nodal 127	-577,7470	75242	N(105)	Nodal 161	Nodal 157	-221,1170
N(53)	Nodal 127	Nodal 141	-80,9285	169243	N(106)	Nodal 159	Nodal 161	17,5607
N(54)	Nodal 152	Nodal 141	-416,6378	76746	N(107)	Nodal 176	Nodal 159	-32,5619
N(55)	Nodal 141	Nodal 158	75,8474	161225	N(108)	Nodal 175	Nodal 161	-248,9804
N(56)	Nodal 158	Nodal 162	482,8975	192540	N(109)	Nodal 175	Nodal 176	-234,1640
N(57)	Nodal 152	Nodal 162	142,1871	147710	N(110)	Nodal 154	Nodal 165	2221,2309
N(58)	Nodal 166	Nodal 162	-134,7632	118169	N(111)	Nodal 165	Nodal 160	3436,7442
N(59)	Nodal 235	Nodal 166	-105,7771	103288	N(112)	Nodal 149	Nodal 160	2939,9173
N(60)	Nodal 235	Nodal 154	142,4414	171465	N(113)	Nodal 90	Nodal 91	1400,5239
N(61)	Nodal 154	Nodal 150	605,9217	87853	N(114)	Nodal 91	Nodal 79	-303,6002
N(62)	Nodal 151	Nodal 235	-103,4937	102734	N(115)	Nodal 74	Nodal 79	377,9905
N(63)	Nodal 74	Nodal 65	-1589,2325	268694	N(116)	Nodal 79	Nodal 72	-463,8321
N(64)	Nodal 65	Nodal 67	-592,8819	175738	N(117)	Nodal 72	Nodal 66	-1106,2722
N(65)	Nodal 99	Nodal 94	33,3376	90010	N(118)	Nodal 74	Nodal 66	-1191,5190
N(66)	Nodal 99	Nodal 98	530,7519	232884	N(119)	Nodal 66	Nodal 65	-397,1654
N(67)	Nodal 99	Nodal 110	186,6369	127760	N(120)	Nodal 66	Nodal 60	136,5671
N(68)	Nodal 110	Nodal 111	185,8914	111392	N(121)	Nodal 80	Nodal 81	3442,5330
N(69)	Nodal 110	Nodal 117	-415,3731	168108	N(122)	Nodal 93	Nodal 81	-2940,9026
N(70)	Nodal 89	Nodal 101	64,1997	182798	N(123)	Nodal 60	Nodal 54	448,8127
N(71)	Nodal 121	Nodal 110	-159,3941	171290	N(124)	Nodal 59	Nodal 60	710,8691
N(72)	Nodal 117	Nodal 122	206,0683	132825	N(125)	Nodal 65	Nodal 59	-176,8830
N(73)	Nodal 112	Nodal 121	-300,3582	146838	N(126)	Nodal 53	Nodal 59	506,6889
N(74)	Nodal 121	Nodal 122	-368,5100	104198	N(127)	Nodal 53	Nodal 54	1666,1999
N(75)	Nodal 122	Nodal 127	-239,7048	71961	N(128)	Nodal 52	Nodal 53	-172,0547

Red de Nivelación Nacional de la República Argentina

Dist. [m]

	Nodo	Nodo	Δ Pot.	Dist.	IN	Nodo	Nodo	Δ Pot.	D
línea	inicio	fin	[m ² s ⁻²]	[m]	línea	inicio	fin	[m ² s ⁻²]	104
N(129)	Nodal 52	Nodal 65	511,3449	291061	N(183)	Nodal 184	Nodal 183	1894,3693	131
N(130)	Nodal 67	Nodal 52	82,0363	267878	N(184)	Nodal 164	Nodal 169	1070,6542	96
N(131)	Nodal 116	Nodal 108	-20,9667	99719	N(185)	Nodal 169	Nodal 170	-785,9269	89
N(132)	Nodal 116	Nodal 118	-211,3327	44216	N(186)	Nodal 170	Nodal 155	-1866,0492	25
N(133)	Nodal 141	Nodal 140	541,1609	27263	N(187)	Nodal 170	Nodal 171	-1509,1709	20
N(134)	Nodal 157	Nodal 174	-55,7612	207060	N(188)	Nodal 170	Nodal 187	6326,0592	18
N(135)	Nodal 175	Nodal 174	-526,2727	155795	N(189)	Nodal 171	Nodal 183	1061,2552	11
N(136)	Nodal 173	Nodal 190	85,1039	224658	N(190)	Nodal 183	Nodal 187	6773,0257	23
N(137)	Nodal 91	Nodal 92	53,7958	161740	N(191)	Nodal 136	Nodal 132	-1312,5287	21
N(138)	Nodal 79	Nodal 80	1658,5007	217137	N(192)	Nodal 183	Nodal 198	455,6841	16
N(139)	Nodal 92	Nodal 80	1301,1473	145239	N(193)	Nodal 120	Nodal 136	1512,3125	14
N(140)	Nodal 92	Nodal 93	7683,9887	161546	N(194)	Nodal 120	Nodal 119	-2704,5144	11
N(141)	Nodal 53	Nodal 45	45,0109	174203	N(195)	Nodal 198	Nodal 203	-250,8636	10
N(142)	Nodal 45	Nodal 37	-29,4535	149963	N(196)	Nodal 187	Nodal 199	7929,2724	14
N(143)	Nodal 73	Nodal 72	-1034,7634	295342	N(197)	Nodal 199	Nodal 198	-14245,4072	18
N(144)	Nodal 62	Nodal 73	729,4620	152190	N(198)	Nodal 184	Nodal 203	2100,1663	19
N(145)	Nodal 80	Nodal 73	-1087,6404	56998	N(199)	Nodal 199	Nodal 211	1562,4799	19
N(146)	Nodal 190	Nodal 189	117,5608	100571	N(200)	Nodal 198	Nodal 210	4139,8455	17
N(147)	Nodal 189	Nodal 172	-52,2752	175714	N(201)	Nodal 120	Nodal 124	2049,4360	9
N(148)	Nodal 93	Nodal 96	3011.1432	180608	N(202)	Nodal 124	Nodal 137	-1076.8048	13
N(149)	Nodal 96	Nodal 82	-1851.1177	304867	N(203)	Nodal 124	Nodal 113	-1483.5913	13
N(150)	Nodal 82	Nodal 81	-4101 3838	172918	N(204)	Nodal 113	Nodal 103	-1926 2690	11
N(151)	Nodal 62	Nodal 82	9359 1669	266773	N(205)	Nodal 104	Nodal 103	686 8378	10
N(152)	Nodal 61	Nodal 62	878 7117	143283	N(206)	Nodal 104	Nodal 105	-1387 4456	10
N(152)	Nodal 61	Nodal 72	570,7117	127055	N(207)	Nodal 120	Nodal 104	2046 6992	10
N(153)	Nodal 60	Nodal 61	205 0192	05650	N(207)	Nodal 104	Nodal 01	2040,0002	14
N(154)	Nodal 62	Nodal 92	2010 7490	220044	N(200)	Nodal 102	Nodal 02	54,4555	10
N(155)	Nodal 174	Nodal 227	2019,7480	140071	N(209)	Nodal 106	Nodal 102	-399,1870	19
N(150)	Nodal 174	Nodal 237	239,5039	149071	N(210)	Nodal 106	Nodal 103	-930,1411	13
N(157)	Nodal 237	Nodal 236	29,5082	111691	N(212)	Nodal 212	Nodal 203	210,1019	19
N(158)	Nodal 236	Nodal 175	257,1593	152325	N(213)	Nodal 125	Nodal 139	810,7600	20
N(159)	Nodal 239	Nodal 175	192,1964	171486	N(214)	Nodal 139	Nodal 137	-538,9519	10
N(161)	Nodal 238	Nodal 176	-156,7850	112500	N(215)	Nodal 219	PF89N(215)	11334,6575	24
N(162)	Nodal 238	Nodal 182	818,5196	104682	N(215)	PF89N(215)	Nodal 211	-589,7808	1
N(163)	Nodal 239	Nodal 192	18,2413	127406	N(217)	Nodal 27	Nodal 24	624,6395	17
N(164)	Nodal 194	Nodal 182	457,2340	93587	N(218)	PF72N(248)	PF38N(218)	-1096,5574	10
N(165)	Nodal 194	Nodal 192	-457,4095	96498	N(218)	PF38N(218)	Nodal 24	-502,1365	5
N(166)	Nodal 192	Nodal 193	-46,7413	78359	N(219)	Nodal 30	Nodal 37	-4134,0362	20
N(167)	Nodal 236	Nodal 193	36,5016	160117	N(220)	Nodal 26	PF6N(220)	6153,3464	3
N(168)	Nodal 193	Nodal 191	-93,2905	159812	N(220)	PF6N(220)	Nodal 30	-1979,1540	14
N(169)	Nodal 191	Nodal 237	26,9731	82723	N(221)	Nodal 33	Nodal 27	-1977,8745	25
N(104)	Nodal 148	Nodal 149	-6475,5194	156781	N(222)	Nodal 139	Nodal 145	-255,1372	19
N(171)	Nodal 147	Nodal 148	3897,8131	137510	N(223)	Nodal 32	Nodal 29	4,9963	15
N(172)	Nodal 136	Nodal 148	3741,5609	164866	N(224)	Nodal 32	Nodal 33	-2218,8347	14
N(173)	Nodal 136	Nodal 137	-539,7527	122642	N(225)	Nodal 33	PF34N(225)	-2416,9793	9
N(174)	Nodal 137	Nodal 147	383,2562	180410	N(225)	PF34N(225)	Nodal 36	111,0344	13
N(175)	Nodal 160	Nodal 155	-4478,1466	173411	N(226)	Nodal 139	Nodal 124	537,0552	12
N(176)	Nodal 148	Nodal 155	-8014,0763	149406	N(227)	Nodal 58	Nodal 48	-2652,0071	14
N(177)	Nodal 155	Nodal 164	1580,9498	96531	N(228)	Nodal 48	Nodal 40	912,9154	11
N(178)	Nodal 147	Nodal 164	-2534,7654	153014	N(229)	Nodal 36	Nodal 37	-2192,5220	13
N(179)	Nodal 160	Nodal 171	-4120,5172	187174	N(230)	Nodal 42	Nodal 37	-3311.0194	20
N(180)	Nodal 165	Nodal 178	-2151.5461	172787	N(231)	Nodal 41	Nodal 40	3944.9778	16
(=00)	Nodal 178	Nodal 171	1467 4901	186719	N(232)	Nodal 41	Nodal 33	734 8543	16
N(181)		110 mml ± / ±							

Red de Nivelación Nacional de la República Argentina

N°	Nodo	Nodo	Δ Pot.	Dist.		N°	Nodo	Nodo	Δ Pot.
línea	inicio	fin	[m ² s ⁻²]	[m]	<u> </u>	ínea	inicio	fin	[m ² s ⁻²]
N(234)	Nodal 44	Nodal 41	-4572,2411	72536	N(285)	Nodal 216	Nodal 215	-351,4927
N(235)	Nodal 43	Nodal 44	-504,6092	119666	N(2	286)	Nodal 217	Nodal 225	499,8864
N(236)	Nodal 44	Nodal 48	-1540,1900	202370	N(2	287)	Nodal 194	Nodal 241	364,8237
N(237)	Nodal 26	Nodal 27	2563,4456	151979	N(2	288)	Nodal 241	Nodal 207	81,3787
N(238)	Nodal 51	Nodal 44	-60,3954	122600	N(2	289)	Nodal 55	Nodal 50	2195,7348
N(239)	Nodal 50	Nodal 43	287,1401	207204	N(2	290)	Nodal 62	Nodal 56	8484,5070
N(240)	Nodal 46	Nodal 47	1274,8580	79669	N(:	291)	Nodal 56	Nodal 51	-2569,0925
N(241)	Nodal 45	Nodal 46	4247,7039	142777	N(2	292)	Nodal 56	Nodal 55	-4607,0059
N(242)	Nodal 47	Nodal 42	-2243,1387	95143	N(2	293)	Nodal 63	Nodal 57	-4981,5298
N(243)	Nodal 43	Nodal 42	-5529,9338	126976	N(:	295)	Nodal 244	Nodal 49	262,2470
N(244)	Nodal 43	Nodal 36	-6646,8959	230393	N(2	296)	Nodal 63	Nodal 64	6778,6375
N(245)	Nodal 50	Nodal 51	-158,6953	77649	N(2	297)	Nodal 57	Nodal 243	1966,0459
N(246)	Nodal 51	Nodal 58	1051,4033	148151	N(2	298)	Nodal 243	Nodal 244	698,1537
N(247)	PF34N(225)	PF6N(220)	4030,1378	266788	N(:	299)	Nodal 190	Nodal 191	77,9816
N(248)	Nodal 29	PF72N(248)	-1978,8905	216058	N(:	300)	Nodal 173	Nodal 174	-47,0652
N(248)	PF72N(248)	Nodal 23	-1061,9307	11334	N(:	301)	Nodal 200	Nodal 184	-46,0455
N(249)	Nodal 27	Nodal 29	4202,1982	204427	N(:	302)	Nodal 195	Nodal 200	540,2068
N(250)	Nodal 107	Nodal 106	-2172,2846	103605	N(:	303)	Nodal 184	Nodal 195	-494,3722
N(251)	Nodal 196	Nodal 241	46,4823	119212	N(:	304)	PF4N(284)	Nodal 195	263,1961
N(252)	Nodal 107	Nodal 114	3717,4520	113596	N(:	305)	Nodal 179	Nodal 178	145,1563
N(253)	Nodal 114	Nodal 129	-3100,5511	125231	N(3	306)	Nodal 58	Nodal 49	-1678,5509
N(254)	Nodal 96	Nodal 114	-3276,4019	207365	N(3	307)	Nodal 64	PF24N(307)	-3963,9850
N(255)	Nodal 93	Nodal 107	-3982,9792	211134	N(3	308)	Nodal 244	PF21N(308)	4211,0923
N(256)	Nodal 64	Nodal 244	-9095,9527	168667	N(3	309)	Nodal 49	PF12N(309)	4877,7319
N(257)	Nodal 106	Nodal 92	-1528,8196	165476	N(:	310)	Nodal 243	Nodal 58	2637,1635
N(258)	Nodal 62	Nodal 63	7342,4275	186448	N(3	311)	Nodal 209	Nodal 212	1181,8266
N(259)	Nodal 125	Nodal 124	1347,3366	173916	N(:	312)	Nodal 206	Nodal 209	358,5264
N(260)	Nodal 213	Nodal 221	551,7296	207321	N(:	313)	Nodal 201	Nodal 206	733,2804
N(261)	Nodal 189	Nodal 188	113,4011	94352	N(:	314)	Nodal 229	Nodal 219	6258,9131
N(262)	Nodal 188	Nodal 197	165,9070	98842	N(3	315)	Nodal 229	PF6N(315)	-186,4827
N(263)	Nodal 190	Nodal 197	397,2999	171585	N(:	315)	PF6N(315)	Nodal 231	2139,3774
N(264)	Nodal 190	Nodal 240	101,8680	98261	N(:	316)	Nodal 231	Nodal 232	-2348,4398
N(265)	Nodal 208	Nodal 240	-423,0424	237144	N(3	317)	Nodal 216	Nodal 209	894,0604
N(266)	Nodal 197	Nodal 208	128,4534	132942	N(3	318)	Nodal 221	Nodal 216	86,3331
N(267)	Nodal 213	Nodal 208	44,5574	82612	N(:	320)	Nodal 218	PF14N(320)	1079,7096
N(268)	Nodal 240	Nodal 202	-10,6366	80681	N(:	320)	PF14N(320)	Nodal 212	-904,6049
N(269)	Nodal 202	Nodal 213	389,0550	187712	N(:	321)	Nodal 229	Nodal 218	558,1848
N(270)	Nodal 202	Nodal 214	15,9534	118783	N(:	322)	Nodal 145	Nodal 163	5158,7617
N(271)	Nodal 213	Nodal 217	43,3299	101020	N(:	323)	Nodal 200	Nodal 206	301,4472
N(272)	Nodal 214	Nodal 217	415,4605	236508	N(:	324)	Nodal 163	Nodal 167	-219,3748
N(273)	Nodal 197	Nodal 201	524,1116	138104	N(:	325)	Nodal 168	Nodal 167	2439,7380
N(274)	Nodal 208	Nodal 215	242,2883	131543	N(:	326)	Nodal 168	Nodal 164	-4930,8122
N(275)	Nodal 188	Nodal 195	579,9195	196831	N(:	327)	Nodal 146	PF16N23	-637,1294
N(276)	Nodal 188	Nodal 180	-21,1777	174619	N(:	327)	PF16N23	Nodal 156	3000,9890
N(277)	Nodal 215	Nodal 201	154,4253	101647	N(:	328)	Nodal 196	Nodal 182	139,5288
N(278)	Nodal 201	Nodal 195	-109,3227	189928	N(:	329)	Nodal 242	Nodal 196	-6492,8809
N(279)	Nodal 180	Nodal 166	144,0328	162079	N(:	330)	Nodal 242	Nodal 207	-6362,6035
N(280)	Nodal 172	Nodal 180	144,6683	195981	N(:	331)	Nodal 23	Nodal 20	2249,8587
N(281)	Nodal 54	Nodal 55	4704,8182	148419	N(:	332)	Nodal 20	Nodal 16	-218,0258
N(282)	Nodal 61	Nodal 55	4755,2891	293840	N(333)	Nodal 16	Nodal 14	-2988,6117
N(283)	Nodal 179	Nodal 166	-173,2771	183989	N(:	334)	Nodal 12	Nodal 14	1966,7213
N(284)	Nodal 179	PF4N(284)	22,1018	20493	N(:	335)	Nodal 10	Nodal 12	752,3955
N(284)	PF4N(284)	Nodal 180	-338,5280	166288	N(:	336)	Nodal 13	Nodal 10	26,0366

Red de Nivelación Nacional de la República Argentina

Dist. [m]

N° línea N(337) N4 N(338) P1 N(339) N4 N(339) P1	Nodo inicio odal 15 F5N(339) odal 19 F5N(339) odal 22 odal 22 F21N(366) odal 15	Nodo fin Nodal 13 Nodal 15 PF5N(339) Nodal 22 Nodal 26 Nodal 21	Δ Pot. [m ² s ⁻²] -1268,7450 272,8562 901,4722 790,0981 -1807,5126	Dist. [m] 76134 207485 18179 102481
N(337) No N(338) Pl N(339) No N(339) Pl	odal 15 F5N(339) odal 19 F5N(339) odal 22 odal 22 F21N(366) odal 15	Nodal 13 Nodal 15 PF5N(339) Nodal 22 Nodal 26 Nodal 21	-1268,7450 272,8562 901,4722 790,0981 -1807,5126	m 76134 207485 18179 102481
N(337) N N(338) Pl N(339) N N(339) Pl	odal 13 F5N(339) odal 19 F5N(339) odal 22 odal 22 F21N(366) odal 15	Nodal 15 PF5N(339) Nodal 22 Nodal 26 Nodal 21	-1268,7430 272,8562 901,4722 790,0981 -1807,5126	207485 18179 102481
N(339) PI N(339) N(N(339) PI	odal 19 F5N(339) odal 22 odal 22 F21N(366) odal 15	Nodal 13 PF5N(339) Nodal 22 Nodal 26 Nodal 21	901,4722 790,0981 -1807,5126	18179 102481
N(339) N N(339) Pl	odal 19 F5N(339) odal 22 odal 22 F21N(366) odal 15	Nodal 22 Nodal 26 Nodal 21	901,4722 790,0981 -1807,5126	102481
N(339) PI	odal 22 odal 22 F21N(366) odal 15	Nodal 22 Nodal 26 Nodal 21	-1807,5126	102481
	odal 22 odal 22 F21N(366) odal 15	Nodal 26 Nodal 21	-1807,5126	4 7 4000
N(340) N	odal 22 F21N(366) odal 15	Nodal 21		174230
N(341) N	F21N(366) odal 15		2060,9119	187490
N(342) PI	odal 15	Nodal 21	750,5284	200218
N(343) N		Nodal 21	2577,9413	158183
N(344) N	odal 21	Nodal 24	-681,1503	230364
N(345) N	odal 181	Nodal 163	-6454,7019	60172
N(346) N	odal 177	Nodal 181	3658,7255	361215
N(347) N	odal 167	Nodal 177	3016,4092	67308
N(348) N	odal 153	Nodal 181	4573,0262	134824
N(349) N	odal 145	Nodal 153	7039,9264	131684
N(351) N	odal 156	Nodal 167	2919,5190	177720
N(352) N	odal 168	Nodal 186	3496,0840	237875
N(353) N	odal 186	Nodal 204	20642,6185	266684
N(354) N	odal 204	Nodal 220	2925,6899	209913
N(355) N	odal 220	PF6N(355)	2737,5578	41680
N(355) PI	F6N(355)	Nodal 222	-1928,2515	67075
N(356) N	odal 222	PF89N(215)	-16118,2180	173374
I (357) N	odal 186	Nodal 187	-1813,4080	86205
I (358) No	odal 153	Nodal 131	5115,4467	155370
I(359) N	odal 223	PF14N(320)	2571,2777	160189
N(360) PI	F6N(315)	Nodal 228	-730,6864	170757
N(361) N	odal 228	Nodal 223	-13.7998	161182
N(362) N	odal 228	Nodal 221	-508.9378	160036
N(363) N	odal 228	Nodal 230	-11.7078	81823
N(365) N	odal 20	PF38N(218)	-2284.4130	185484
N(366) N	odal 13	PF21N(366)	3096 8973	173391
N(366) PI	F21N(366)	Nodal 14	-351 4103	42922
N(367) N	odal 11	Nodal 14	565 6522	178445
N(368) N	odal 12	Nodal 11	1400 0046	146324
N(360) N	odal 11	DE5N(201)	-110.0224	122427
N(270) N		rr5N(301)	-110,0324	134914
N(370) N	odal 9	PF7N(373)	115,1981	134811
N(371) N	odal 5	PF7N(371)	514,8461	44959
N(371) PI	F7N(371)	PF7N(381)	-645,7331	116863
N(372) PI	F13N(374)	Nodal 6	1771,3983	114180

3.1.6. DETECCIÓN DE ERRORES ACCIDENTALES

La identificación de aquellas líneas de nivelación que presentaban errores accidentales se llevó a cabo mediante el control de cierre de los polígonos que conforman la red de Alta Precisión, empleando dos procesos distintos: cierre con desniveles geométricos y cierre con desniveles ortométricos. La determinación de estos últimos, se basó en los desniveles geopotenciales calculados en la Sección 3.1.5 y en el procedimiento para computar alturas ortométricas descripto en la Sección 2.2.4.

En las Tabla 3 y Tabla 4 se presentan a modo de ejemplo, los cierres de dos polígonos de nivelación, uno de ellos localizado en la provincia de San Juan (número 108) y el otro ubicado en las provincias de Salta, Catamarca y Tucumán (número 144). El primero está conformado por las

líneas de Alta Precisión N(349), N(322), N(345) y N(348), tiene un recorrido de 485 km, y por lo tanto, la tolerancia máxima admitida en su cierre, que surge de la ecuación (1.1), es igual a 6,6 cm. Sin embargo, el cierre geométrico es igual a 9,9 cm, es decir, no cumple con la tolerancia establecida. No obstante, cuando se utilizan desniveles ortométricos el error de cierre se reduce a -0.8 cm.

El segundo polígono, es decir el número 144, está compuesto por las líneas de Alta Precisión N(355), N(356), N(215), N(199), N(196), N(357), N(353) y N(354), tiene un recorrido de 1200 km, y por lo tanto, la tolerancia máxima admitida en su cierre es igual a 10,4 cm. Sin embargo, los cierres determinados a partir de los desniveles geométricos y ortométricos son –107,3 cm y –21,2 cm respectivamente. Estos resultados tienen las siguientes implicancias: a) existen errores accidentales en una o más líneas del polígono 144; b) se deberá identificar cuál o cuáles líneas presentan esos errores; c) aquella o aquellas líneas que presenten errores accidentales se eliminarán del ajuste por mínimos cuadrados que dará origen a la red de Alta Precisión definitiva (ver Sección 3.1.8); y d) aunque el cierre utilizando los desniveles ortométricos es mayor que la tolerancia, se puede observar una mejora superior al 80% con respecto al cierre utilizando desniveles geométricos.

Línea	Desde	Hasta	ΔH Geom. [m]	ΔH Ortom. [m]	Distancia [m]
N(349)	Nodal 153	Nodal 145	-719,059	-719,094	131684
N(322)	Nodal 145	Nodal 163	526,913	526,952	158985
N(345)	Nodal 163	Nodal 181	659,421	659,329	60172
N(348)	Nodal 181	Nodal 153	-467,176	-467,195	134824
Sumatoria			0,099	-0,008	485665
Tolerancia			0,066	0,066	

Tabla 3: Control de cierre del polígono de nivelación número 108, localizado en la provincia de San Juan.

Tabla 4: Control de cierre del polígono de nivelación número 144, localizado en las provincias de Salta, Catamarca y Tucumán.

Línea	Desde	Hasta	ΔH Geom. [m]	ΔH Ortom. [m]	Distancia [m]
N(355)	Nodal 220	Nodal 222	82,779	82,752	108755
N(356)	Nodal 222	PF89N(215)	-1647,979	-1647,425	173374
N(215)	PF89N(215)	Nodal 211	-60,287	-60,293	18255
N(199)	Nodal 211	Nodal 199	-159,730	-159,700	193736
N(196)	Nodal 199	Nodal 187	-810,163	-810,312	143314
N(357)	Nodal 187	Nodal 186	185,283	185,270	86205
N(353)	Nodal 186	Nodal 204	2109,904	2110,334	266684
N(354)	Nodal 204	Nodal 220	299,120	299,162	209913
Sumatoria			-1,073	-0,212	1200236
Tolerancia			0,104	0,104	

El procedimiento descripto anteriormente se replicó con los 156 polígonos. En las Fig. 35 y Fig. 36 se pueden observar los resultados obtenidos luego de realizar los cierres de los polígonos a partir de los desniveles geométricos y ortométricos respectivamente. En ambos casos, los polígonos color verde hacen referencia a cierres inferiores a la tolerancia; aquellos de color amarillo representan polígonos con cierres superiores a la tolerancia (hasta 1,3 veces el valor de

la misma); y los polígonos de color rojo identifican aquéllos cuyo cierre supera 1,3 veces el valor de la tolerancia.

Luego de analizar en forma individual cada uno de los polígonos se decidió excluir 27 líneas por presentar errores accidentales. La Fig. 37 muestra los cierres de los polígonos a partir de los desniveles ortométricos luego del proceso de depuración.

Fig. 35. Cierres geométricos de polígonos de la red de nivelación de Alta Precisión

Fig. 36. Cierres ortométricos de polígonos de la red de nivelación de Alta Precisión

Fig. 37. Cierres ortométricos de polígonos de la red de nivelación de Alta Precisión luego de haber excluido líneas que presentaban errores accidentales

3.1.7. ELECCIÓN DEL PUNTO DATUM

Los datums verticales seleccionados para ajustar la red de Alta Precisión son los siguientes: a) el Nodal 71, localizado en la ciudad de Mar del Plata (latitud 37°59'32,2"S y longitud 57°33'28,3"O) y cuyo número geopotencial es 121,64978 m²s⁻², se utilizó para ajustar el sector continental; y b) el PF1N(383), localizado en la ciudad de Ushuaia (latitud 54°48'27,4"S y longitud 68°18'16,6"O) y cuyo número geopotencial es 38,42700 m²s⁻², dio origen a la red localizada en la Isla Grande de Tierra del Fuego. La elección de los puntos datums verticales y sus números geopotenciales corresponden a los valores históricos.

De acuerdo a Tocho et al. (2015), el valor del potencial W_0 al cual están referidos los puntos datums de la red de Alta Precisión [es decir, el Nodal 71 y el PF1N(383)] es 62.636.853,8 m²s⁻². Mientras que el W_0 global propuesto por la IAG mediante la resolución número 1 del año 2015 es 62.636.853,4 m²s⁻². Esta diferencia se traduce en un desplazamiento vertical de ~4 cm.

3.1.8. AJUSTES POR EL MÉTODO DE MÍNIMOS CUADRADOS

El ajuste de la red se llevó a cabo a través del método de mínimos cuadrados, que propone minimizar la suma de todos los residuos de las observaciones al cuadrado. El sistema de ecuaciones que fue utilizado para armar las ecuaciones normales tiene la siguiente forma (Wolf & Ghilani, 2006):

$$H_i - H_j = \Delta h_{ij} + v_{\Delta h_{ij}} \tag{3.4}$$

donde H_i y H_j representan las alturas geopotenciales de dos nodos que han sido nivelados, y Δh_{ij} y $v_{\Delta h_{ij}}$ son el desnivel potencial entre los nodos y su desvío respectivamente.

El sistema de ecuaciones que debió resolverse para determinar el valor de los números geopotenciales de los nodos comprende 362 observaciones sobre un total de 414 existentes, es decir, se excluyeron 52 observaciones. Esto se debe a lo siguiente: 27 líneas presentaron errores accidentales (ver Sección 3.1.6), 4 líneas pertenecen a la Isla Grande de Tierra del Fuego y no están vinculadas con el sector continental, y 21 líneas no tienen cierre (por ejemplo, cruces internacionales). Este sistema de ecuaciones se expresa matricialmente de la siguiente forma:

$$\mathbf{AX} + \mathbf{B} = \mathbf{L'} + \mathbf{V} \tag{3.5}$$

donde **X** y **A** son las matrices con las incógnitas y sus coeficientes (también denominada "de diseño") respectivamente; y **B**, **L**' y **V** son las matrices que contienen los valores geopotenciales conocidos (en este caso el del Nodal 71), las diferencias de potencial entre nodos (determinadas en la Sección 3.1.5), y los residuos de las observaciones respectivamente.

Siendo que los valores geopotenciales conocidos de la matriz **B** también pueden ser considerados como observaciones dentro de la matriz **L'**, dichas matrices pueden combinarse (L' - B) de modo que la ecuación (3.5) se reduce a

$$\mathbf{AX} = \mathbf{L} + \mathbf{V} \,. \tag{3.6}$$

Red de Nivelación Nacional de la República Argentina

Este sistema de ecuaciones normales puede resolverse mediante un ajuste por mínimos cuadrados a partir de la siguiente ecuación matricial (Wolf & Ghilani, 2006):

$$\mathbf{X} = (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{L}$$
(3.7)

donde **P** es la matriz diagonal que contiene los pesos de cada una las diferencias de potencial, que provienen de la siguiente ecuación:

$$p_i = \frac{1}{\text{distancia}}.$$
(3.8)

Tal como fue expresado anteriormente, debido a los errores accidentales que fueron identificados y descriptos en la Sección 3.1.6, y la imposibilidad de ajustar ciertas líneas por no cerrar en un nodo (por ejemplo, las líneas de cruces internacionales), se resolvió hacer cuatro ajustes diferentes: a) figura principal que no contempla líneas con errores accidentales, líneas de Tierra del Fuego y líneas sin cierre (362 observaciones); b) set de líneas excluidas del ajuste principal en la zona Noroeste (3 observaciones); c) set de líneas excluidas del ajuste principal en la zona de Cuyo (7 observaciones); y d) set de líneas excluidas del ajuste principal en la zona Sur (4 observaciones) (ver Fig. 40).

Fig. 40. Diferentes ajustes realizados a la red de nivelación de Alta Precisión:
a) en color gris red principal;
b) en color rojo red Noroeste;
c) en color verde red Cuyo;
y d) en color azul red Sur

En las Tabla 5, Tabla 6, Tabla 7 y Tabla 8 se pueden observar los números geopotenciales de los nodos de la red de Alta Precisión luego de realizar los ajustes por mínimos cuadrados.

Nodo	Geopot. [m²s-²]	D.Est. [m ² s ⁻²]
Nodal 2	2378,8472	0,9695
Nodal 3	755,0174	0,9624
Nodal 4	112,8014	0,9549
Nodal 5	2375,2165	0,9571
Nodal 6	1886,2949	0,9550
Nodal 7	1675,0637	0,9241
Nodal 8	1954,4507	0,9417
Nodal 9	3343,9078	0,9212
Nodal 10	88.9509	0.8860
Nodal 11	2241.9495	0.9183
Nodal 12	841.5674	0.8841
Nodal 13	62,8787	0.8668
Nodal 14	2808 3222	0.8586
Nodal 15	1331.6182	0.8640
Nodal 16	5796 9430	0.8355
Nodal 19	157 2191	0.9085
Nodal 20	6014 9770	0.8007
Nodal 21	3909 6018	0.8477
Nodal 22	1848 7540	0.8959
Nodal 23	3765 1349	0.7780
Nodal 24	3228 4350	0,7720
Nodal 26	41 2410	0.9702
Nodal 27	2603 8410	0,7263
Nodal 29	6805 9026	0.7178
Nodal 30	4215 9916	0,8838
Nodal 32	6800 7669	0,6697
Nodal 33	4581 9521	0.6515
Nodal 36	2276.0889	0,6315
Nodal 37	83 6135	0,6745
Nodal 40	7792 2183	0,6347
Nodal 41	3847 2155	0.6163
Nodal 42	3394 7028	0.6087
Nodal 43	8924 4236	0.5915
Nodal 44	8419 4978	0.5901
Nodal 45	115 9231	0.5833
Nodal 46	4363 3379	0.6134
Nodal 47	5638.0345	0.6168
Nodal 48	6879 1951	0.6183
Nodal 49	7852 1606	0.6318
Nodal 50	8637 4840	0.5904
Nodal 51	8479 7064	0 5790
Nodal 52	243 6903	0 4995
Nodal 52	71 2649	0 4969
Nodal 54	1737 3779	0 5144
Nodal 55	6441.8610	0.5470

Nodo	Geopot.	D.Est.
Nodal 56	[m ² S ⁻²]	[m ² S ⁻²]
Nodal 57	4924 9719	0,5405
Nodal 58	0530.0852	0,6049
Nodal 59	578 0279	0.4906
Nodal 60	1288 8666	0,4780
Nodal 61	1684.8746	0.4880
Nodal 62	2563 8011	0,4000
Nodal 63	0006 1202	0,5566
Nodal 65	755 0549	0,5500
Nodal 66	1152 3254	0.4601
Nodal 67	162 1507	0,4001
Nodel 69	1062 5444	0,4217
Nodal 60	1002,3444	0,3930
Nodel 70	796 1422	0,3330
Nodal 71	121 6400	0,2705
Nodal 72	2259 5601	0,0000
Nodal 72	2258,5691	0,4738
Nodal 73	3293,2791	0,4252
Nodal 74	2344,2374	0,4352
Nodal 75	2314,/924	0,3946
Nodal 76	2587,0918	0,3448
	1917,0364	0,2990
Nodal 78	229,8109	0,2601
Nodal 79	2722,3403	0,4607
Nodal 80	4380,9149	0,4761
Nodal 81	7823,4046	0,5021
Nodal 82	11924,9148	0,5415
Nodal 83	1924,3543	0,4148
Nodal 84	1589,9381	0,3656
Nodal 86	1123,1654	0,4038
Nodal 87	1124,5739	0,4177
Nodal 89	96,5027	0,3336
Nodal 90	1625,3275	0,4367
Nodal 91	3025,9454	0,4665
Nodal 92	3079,8709	0,4692
Nodal 93	10764,1355	0,4977
Nodal 94	533,4043	0,3646
Nodal 95	344,4772	0,3470
Nodal 96	13775,3740	0,5314
Nodal 97	1126,0298	0,4218
Nodal 98	1030,9943	0,4152
Nodal 99	500,1841	0,3840
Nodal 100	280,1017	0,3793
Nodal 101	160,9033	0,3942
Nodal 103	3678,8105	0,4725
Nodal 104	2992,1201	0,4631

Nodo	Geopot. [<u>m²s-</u> ²]	D.Est. [<u>m²s-</u> ²]
Nodal 105	1604,8178	0,4366
Nodal 106	4608,8501	0,4933
Nodal 107	6781,1571	0,5046
Nodal 108	220,7220	0,4056
Nodal 109	376,0124	0,4000
Nodal 110	687,0661	0,3999
Nodal 111	872,8247	0,4215
Nodal 112	1147,1546	0,4227
Nodal 113	5604,8660	0,5052
Nodal 114	10498,6335	0,5096
Nodal 116	241,7088	0,4328
Nodal 117	271,9443	0,4359
Nodal 118	30,4254	0,4578
Nodal 119	2334,2412	0,4495
Nodal 120	5038,7943	0,4646
Nodal 121	846,6736	0,4345
Nodal 122	478,0884	0,4474
Nodal 123	1403,3344	0,4794
Nodal 124	7088,2065	0,4775
Nodal 125	5740,6042	0,5092
Nodal 126	109,5594	0,5024
Nodal 127	238,3727	0,4547
Nodal 128	816,1731	0,4466
Nodal 129	7397,9050	0,5064
Nodal 131	18449,4375	0,5527
Nodal 132	5238,7028	0,4819
Nodal 133	1097,9187	0,4514
Nodal 134	561,4941	0,5167
Nodal 135	97,6623	0,4886
Nodal 136	6551,1785	0,4820
Nodal 137	6011,5576	0,4887
Nodal 138	1965,9248	0,4636
Nodal 139	6550,9283	0,5057
Nodal 140	698,4523	0,4761
Nodal 141	157,2993	0,4668
Nodal 142	672,6840	0,5132
Nodal 143	480,8985	0,5034
Nodal 144	824,7757	0,4978
Nodal 145	6293,3343	0,5302
Nodal 146	5947,6744	0,5246
Nodal 147	6394,5187	0,4999
Nodal 148	10292,6051	0,5065
Nodal 149	3816,9539	0,4696
Nodal 150	1704,6066	0,4710
Nodal 151	1059,9343	0,4673

Tabla 5: Números geopotenciales de los nodos que componen la red principal.

Red de Nivelación Nacional de la República Argentina

Nodo	Geopot.	D.Est.
Nodal 152	573,8506	0,4647
Nodal 153	13333,5477	0,5547
Nodal 154	1098,7949	0,4921
Nodal 155	2278,7043	0,5011
Nodal 156	8311,3078	0,5585
Nodal 157	420,2030	0,5180
Nodal 158	233,2370	0,5070
Nodal 159	623,7718	0,5352
Nodal 160	6756,8331	0,4843
Nodal 161	641,4096	0,5206
Nodal 162	716,1415	0,4903
Nodal 163	11451,8678	0,5758
Nodal 164	3859,7295	0,5070
Nodal 165	3320,1272	0,4910
Nodal 166	850,7686	0,4853
Nodal 167	11230,4454	0,5528
Nodal 168	8790,2883	0,5398
Nodal 169	4930,6045	0,5327
Nodal 170	4144,8825	0,5205
Nodal 171	2636,1716	0,5087
Nodal 172	562,3848	0,5040
Nodal 173	411,5498	0,5003
Nodal 174	364,4284	0,5151
Nodal 175	890,5870	0,5415
Nodal 176	656,3028	0,5825
Nodal 177	14246,9962	0,5777
Nodal 178	1168,6846	0,5072
Nodal 179	1023,6790	0,5100
Nodal 180	707,0686	0,5107
Nodal 181	17906,4833	0,5693
Nodal 182	1631,4457	0,6287
Nodal 183	3697,5871	0,5204
Nodal 184	1803,3150	0,5202
Nodal 186	12284,9639	0,5647
Nodal 187	10471,0455	0,5406
Nodal 188	728,4473	0,5232

Nodo	Geopot.	D.Est. [m ² s ⁻²]
Nodal 189	614,8329	0,5288
Nodal 190	497,1434	0,5304
Nodal 191	576,8855	0,5988
Nodal 192	716,8279	0,5962
Nodal 193	670,0798	0,5921
Nodal 194	1174,3099	0,6216
Nodal 195	1308,9561	0,5171
Nodal 196	1491,4694	0,7259
Nodal 197	894,3953	0,5411
Nodal 198	4153,0879	0,5733
Nodal 199	18399,8117	0,6044
Nodal 200	1849,4337	0,5514
Nodal 201	1418,5258	0,5492
Nodal 202	588,6044	0,5865
Nodal 203	3902,0660	0,6001
Nodal 206	2151,0690	0,5695
Nodal 207	1621,0813	0,7368
Nodal 208	1022,1163	0,5776
Nodal 209	2509,6997	0,5686
Nodal 210	8292,9895	0,6183
Nodal 211	19961,6080	0,6413
Nodal 212	3691,6830	0,5871
Nodal 213	977,6399	0,5845
Nodal 214	604,7370	0,6433
Nodal 215	1264,2464	0,5616
Nodal 216	1615,7629	0,5712
Nodal 217	1020,5557	0,7128
Nodal 219	9215,7971	0,6132
Nodal 221	1529,5505	0,5865
Nodal 223	2024,9903	0,6288
Nodal 225	1520,7502	0,7358
Nodal 228	2038,7753	0,6034
Nodal 229	2956,3014	0,6232
Nodal 230	2024,7753	0,7255
Nodal 231	4908,9932	0,6582
Nodal 232	2560,3176	0,7040

Nodo	Geopot.	D.Est.
Nedel 225	m ² s ⁻²	[m ² s ⁻²]
Noual 235	956,4607	0,4891
Nodal 236	633,4663	0,5757
Nodal 237	603,9085	0,5697
Nodal 238	813,0038	0,6184
Nodal 239	698,5034	0,6043
Nodal 240	599,1277	0,5631
Nodal 241	1539,4407	0,7003
Nodal 242	7983,9689	0,7499
Nodal 243	6891,1801	0,6312
Nodal 244	7589,5536	0,6404
PF13N(89)	30913,1995	0,6108
PF89N(215)	20551,3246	0,6422
PF38N(218)	3730,5529	0,7770
PF6N(220)	6195,1456	0,8176
PF34N(225)	2165,0076	0,6754
PF72N(248)	4827,0674	0,7738
PF4N(284)	1045,7607	0,5110
PF6N(315)	2769,7513	0,6210
PF14N(320)	4596,2832	0,6055
PF5N(339)	1058,6911	0,9005
PF21N(366)	3159,7408	0,8680
PF7N(371)	2889,9582	0,9460
PF7N(373)	3458,9665	0,9014
PF13N(374)	115,0445	0,9430
PF14N(374)	165,2434	0,9442
PF3N(375)	1825,1472	0,9654
PF5N(381)	2132,3507	0,9284
PF7N(381)	2243,8033	0,9268
PF9N(388)	1534,5274	0,9819
PF16N23	5310,5454	0,5200

Tabla 6: Números geopotenciales de los nodos que componen la red Noroeste.

Nodo	Geopot. [m²s-²]
PF6N(355)	38595,5226
PF19N(394)	21459,8391
Nodal 219	9215,7459

Nodo	Geopot. [m²s-²]
Nodal 63	9906,1495
Nodal 64	16685,0038
Nodal 129	7398,0245
Nodal 131	18449,4977
Nodal 145	6293,1420
Nodal 153	13333,5198
Nodal 244	7589,5800

Tabla 7: Números geopotenciales de los nodos que componen la red Cuyo.

Tabla 8: Números geopotenciales de los nodos que componen la red Sur.

Nodo	Geopot. [m²s-²]
Nodal 26	41,2637
Nodal 37	83,6354

3.1.9. DETERMINACIÓN DE ALTURAS ORTOMÉTRICAS FINALES

A partir de los números geopotenciales de los nodos de la red de Alta Precisión determinados mediante el método de mínimos cuadrados, se calcularon los números geopotenciales de los pilares altimétricos intermedios, es decir, los puntos que componen cada una de las líneas de nivelación.

Para ello, se calcularon las diferencias entre los desniveles geopotenciales observados (ver Sección 3.1.5) y aquellos que surgen de la resta entre los números geopotenciales de los nodos (ver Sección 3.1.8), es decir,

$$\Delta C_{B-A} = \sum_{A}^{B} \left(\frac{g_i + g_{i+1}}{2} \delta H_{i-i+1} \right) - (C_B - C_A)$$
(3.9)

donde el primer término de la ecuación corresponde a la aplicación de la fórmula (2.41) entre dos nodos consecutivos A y B cualesquiera vinculados por una línea de nivelación, y C_B y C_A son los valores de los números geopotenciales de los nodos A y B respectivamente, que surgen del ajuste por mínimos cuadrados.

Luego, se distribuyeron aquellas diferencias en forma proporcional a la distancia, con el propósito de calcular los números geopotenciales de los puntos intermedios, es decir,

$$C_{i+1} = C_i + \frac{g_i + g_{i+1}}{2} \delta H_{i-i+1} + \frac{(C_B - C_A) \times L_{i-i+1}}{L_{B-A}}$$
(3.10)

donde el C_{i+1} y C_i son dos números geopotenciales que corresponden a puntos intermedios consecutivos, el segundo término es la diferencia de potencial entre ellos, L_{i-i+1} es la distancia entre dichos puntos, y L_{B-A} es la distancia entre los nodos A y B. Esta operación representa conceptualmente un caso particular de la aplicación del criterio de mínimos cuadrados (ver Sección 3.1.8).

Con respecto a las líneas que no fueron incluidas en alguno de los cuatro ajustes llevados a cabo anteriormente, existen dos grupos: a) aquellas que no tienen cierre, es decir, que corresponden a cruces internacionales o están dentro de la Isla Grande de Tierra del Fuego; o b) aquellas en las cuales se detectaron errores accidentales, y por lo tanto, estaban fuera de la tolerancia propuesta en la ecuación (1.1), pero cuyos extremos han sido incluidos en los ajustes descriptos en la Sección 3.1.8, y por lo tanto, tienen un valor geopotencial (ver Fig. 41).

Fig. 41. Líneas de nivelación de la red de Alta Precisión que no fueron incluidas dentro del ajuste por mínimos cuadrados

Para determinar los números geopotenciales de los puntos intermedios correspondientes a las líneas de la primera categoría descripta anteriormente, simplemente se fijó el número geopotencial de arranque y luego se realizó la sumatoria de los desniveles geopotenciales parciales. Por otra parte, para determinar los números geopotenciales de los puntos intermedios correspondientes a las líneas de la segunda categoría, se recurrió nuevamente a las ecuaciones (3.9) y (3.10).

Una vez obtenidos los números geopotenciales de cada uno de los pilares de la red de Alta Precisión se procedió a la determinación de la altura ortométrica propuesta por Mader (1954) mediante la aplicación de la ecuación (2.53), teniendo presente que es necesario realizar al menos tres iteraciones para lograr la convergencia de la serie.

3.2. RED DE NIVELACIÓN DE PRECISIÓN Y TOPOGRÁFICA

3.2.1. AJUSTES POR EL MÉTODO DE MÍNIMOS CUADRADOS

Para llevar a cabo el ajuste de las líneas de órdenes inferiores se realizó un procedimiento similar al descripto en las secciones anteriores. Primeramente se ajustaron las líneas de Precisión de cada uno de los polígonos mediante el método de mínimos cuadrados (ver Sección

3.1.8), utilizando como alturas ortométricas conocidas a aquellas que corresponden a los pilares altimétricos de la red de Alta Precisión y que fueran determinadas en la Sección 3.1.9.

A continuación, se realizó un proceso idéntico con las líneas Topográficas, pero en este caso, las alturas conocidas correspondían tanto a puntos de la red de Alta Precisión como a puntos de la red de Precisión. En la Fig. 42 se puede observar un ejemplo de un polígono que contiene líneas de nivelación de las redes de Precisión y Topográfica.

4. ANÁLISIS DE LOS RESULTADOS

4.1. DIFERENCIAS RESPECTO A LOS ANTIGUOS VALORES DE LA RED

Las nuevas alturas ortométricas de los pilares que componen la red de nivelación presentaron diferencias significativas respecto a las antiguas alturas oficiales, especialmente en las zonas cordilleranas. Las máximas diferencias se encuentran en la Puna (-2,258 m) y en la Patagonia (+0,785 m). La Fig. 43 muestra la distribución de las diferencias a partir de las alturas de los nodos.

Fig. 43. Diferencias entre el viejo y nuevo sistema vertical Nacional determinadas sobre los nodos de la red de Alta Precisión

4.2. COMPARACIÓN CON MODELO GEOPOTENCIAL GLOBAL EGM08

A partir de una serie de mediciones realizadas con equipos GPS doble frecuencia sobre 2253 pilares altimétricos (ver Sección 3.1.2), se realizó la comprobación de las nuevas alturas ortométricas. Para ello, primeramente se determinaron los valores de ondulación geoidal de dichos puntos utilizando la siguiente ecuación (Heiskanen & Moritz, 1967):

$$N = h - H \tag{4.1}$$

donde *h* representa las alturas elipsoidales de los pilares en el marco POSGAR07 y *H* simboliza las nuevas alturas ortométricas determinadas.

Este mismo proceso se llevó a cabo nuevamente utilizando las viejas alturas de los pilares altimétricos (H'), lo que permitió obtener otro juego de ondulaciones geoidales (N') para los mismos pilares. Por último, a partir del modelo geopotencial global EGM08 (Pavlis et al., 2012)

se derivaron ondulaciones geoidales (N_{EGM08}) para los mismos puntos altimétricos. La Tabla 9 muestra los valores estadísticos de las diferencias entre N y N_{EGM08} y las diferencias entre N' y N_{EGM08} . Estos resultados muestran que existe una mayor coherencia entre las nuevas alturas ortométricas de la red y el modelo EGM08.

	$N - N_{EGM08}$ [m]	$N' - N_{EGM08}$ [m]
Mínimo	-0,921	-0,932
Máximo	1,958	4,153
Promedio	0,232	0,360
Desvío estándar	0,283	0,482

Tabla 9: Valores estadísticos de las diferencias entre las ondulaciones geoidales basadas en las alturas de los pilares altimétricos y las derivadas del modelo EGM08.

5. CONCLUSIONES

Se ha determinado un nuevo sistema de alturas para la República Argentina a partir del ajuste de la red de nivelación de Alta Precisión en función de números geopotenciales, la determinación de alturas ortométricas mediante el método propuesto por Mader (1954) y el posterior ajuste de las líneas de ordenes inferiores (es decir, Precisión y Topográficas).

Esta red altimétrica conforma parte de la infraestructura geodésica básica necesaria para avanzar hacia el desarrollo de la Nación, resultando vital para diversas aplicaciones tales como el aprovechamiento de las aguas (en todos sus aspectos), la construcción de vías de comunicación (terrestres o fluviales), la generación de cartografía, la explotación científica de las industrias madres, el conocimiento del geoide, y la investigación aplicada dentro de las ciencias de la Tierra.

Las nuevas alturas ortométricas de los pilares presentan diferencias significativas respecto a las antiguas alturas oficiales, especialmente en las zonas cordilleranas. Las máximas diferencias se encuentran en la Puna (-2,258 m) y en la Patagonia (+0,785 m). Por otra parte, las nuevas alturas demuestran mayor coherencia con el modelo geopotencial global EGM08.

REFERENCIAS

Ashtech Inc. (1989). Ashtech XII: GPS post processing system (pp. 135). Sunnyvale, California.

- Balasubramania, N. (1994). Definition and realization of a global vertical datum (D. o. G. S. a. Surveying, Trans.) (pp. 111). Columbus, United States of America: Ohio State University.
- Bott, M. H. P. (1959). The use of electronic digital computors for the evaluation of gravimetric terrain corrections. *Geophysical Prospecting*, *7*(1), 45-54.
- Bruns, H. (1878). Die figur der erde. Berlin, P. Stankiewicz, 1878., 1.
- D'Onofrio, E., Fiore, M., Mayer, F., Perdomo, R., & Ramos, R. (1999). La referencia vertical. *Contribuciones a la Geodesia en la Argentina de fines del siglo XX. Universidad Nacional de Rosario*, 99-127.
- Drewes, H. (1978). *Experiences with least squares collocation as applied to interpolation of geodetic and geophysical quantities*. Presentado en 12 Symposium on Mathematical Geophysics, Caracas, Venezuela.
- El-Rabbany, A. (2006). *Introduction to GPS: the global positioning system* (2nd ed.). Norwood: Artech house.
- Featherstone, W. E. (1998). Do we need a Gravimetric Geoid or a Model of the Australian Height Datum to Transform GPS Heights in Australia? *Australian Surveyor*, 43(4), 273-280. doi: 10.1080/00050350.1998.10558758
- Featherstone, W. E., & Claessens, S. J. (2008). Closed-form transformation between geodetic and ellipsoidal coordinates. *Studia Geophysica et Geodaetica*, 52(1), 1-18. doi: 10.1007/s11200-008-0002-6
- Featherstone, W. E., Dentith, M. C., & Kirby, J. F. (1998). Strategies for the accurate determination of orthometric heights from GPS. *Survey Review*, *34*(267), 278-296.
- Featherstone, W. E., & Kuhn, M. (2006). Height systems and vertical datums: a review in the Australian context. *Journal of Spatial Science*, *51*(1), 21-41.
- Heck, B., & Rummel, R. (1990). Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data *Sea Surface Topography and the Geoid* (pp. 116-128): Springer.

Heiskanen, W. A., & Moritz, H. (1967). *Physical geodesy*. San Francisco: W.H. Freeman.

Helmert, F. (1890). Die Schwerkraft im Hochgebirge, insbesondere in den Tyroler Alpen. *Veröff. Königl. Preuss. Geod. Inst,* 1.

Herring, T. A., King, R. W., & McClusky, S. C. (2010). Introduction to Gamit/Globk (A. Department of Earth, and Planetary Sciences, Trans.). Cambridge, Massachusetts, United States of America: Massachusetts Institute of Technology.

Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical geodesy (2 ed.). Austria: Springer-Verlag.

- Instituto Geográfico Militar. (1912). *Anuario del Instituto Geográfico Militar, 1912* (Vol. I). Buenos Aires, Argentina: Estado Mayor del Ejército.
- Instituto Geográfico Militar. (1922). *Anuario del Instituto Geográfico Militar, 1915-1919* (Vol. IV). Buenos Aires, Argentina: Ministrerio de Guerra.
- Instituto Geográfico Militar. (1928). *Anuario del Instituto Geográfico Militar, 1920-1926* (Vol. V). Buenos Aires, Argentina: Ministerio de Guerra.
- Instituto Geográfico Militar. (1946). Intrucciones técnicas para la ejecución de los trabajos geodésicos (I.T.6a.). Buenos Aires, Argentina: Ejército Argentino.
- Instituto Geográfico Militar. (1949). *Anuario de la Dirección General del Instituto Geográfico Militar, 1944-1946* (Vol. X). Buenos Aires, Argentina: Ejército Argentino.
- Instituto Geográfico Militar. (1951). *Anuario de la Dirección General del Instituto Geográfico Militar, 1950* (Vol. XII). Buenos Aires, Argentina: Ejército Argentino.
- Instituto Geográfico Militar. (1952). *Anuario de la Dirección General del Instituto Geográfico Militar, 1951* (Vol. XIV). Buenos Aires, Argentina: Ejército Argentino.
- Instituto Geográfico Militar. (1976). *Anuario del Instituto Geográfico Militar, 1963-1975* (Vol. XVII). Buenos Aires, Argentina: Comando en Jefe del Ejército.
- Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (<u>http://srtm.csi.cgiar.org</u>).
- Mader, K. (1954). Die orthometrische Schwerekorrektion des Prazisions-Nivellements in den Hohen Tuaern. *Wien, Osterreichischer Verein fur Vermessungswesen, 1954., 1.*
- Mather, R. S. (1971). The analysis of the earth's gravity field. *Kensington, Australia: School of Surveying, University of New South Wales, 1971., 1.*

Melchior, P. (1983). The tides of the planet Earth. Oxford, Pergamon Press, 1983. 653 p., 1.

Moirano, J., Brunini, C., Font, G., Lauria, E. A., & Ramos, R. (2002). Hacia una nueva referencia vertical en Argentina. *Actas XXI Reunión Científica de Geofísica y Geodesia. Asociación Argentina de Geofísicos y Geodestas. Rosario. Argentina*.

Molodensky, M. S. (1945). Fundamental problems of geodetic gravimetry. TRUDY Ts NIIGAiK, 42.

- Moritz, H. (1962). Interpolation and prediction of gravity and their accuracy (Department of Geodetic Science and Surveying, Trans.). Columbus, Ohio, USA: Ohio State University.
- Moritz, H. (1968). On the use of the terrain correction in solving Molodensky's problem. Columbus, United States of America: Ohio State University.
- Moritz, H. (1980a). Advanced physical geodesy. Advances in Planetary Geology, 1.
- Moritz, H. (1980b). Geodetic reference system 1980. *Bulletin Géodésique, 54*(3), 395-405. doi: 10.1007/BF02521480
- National Imagery and Mapping Agency. (1997). World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems (3rd ed.): Department of Defense of the United States of America.
- Pacino, M. C., Cogliano, D., Font, G., Moirano, J., Natalí, P., Lauría, E. A., Ramos, R., & Miranda, S. (2007). Activities Related to the Materialization of a New Vertical System for Argentina. In P. Tregoning & C. Rizos (Eds.), *Dynamic Planet* (Vol. 130, pp. 671-676): Springer Berlin Heidelberg.
- Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). *Journal of Geophysical Research*, 117(B4). doi: 10.1029/2011jb008916
- Piñón, D. A. (2016). *Development of a precise gravimetric geoid model for Argentina.* (M.Sc.), RMIT University, Melbourne, Australia.
- Piñón, D. A., Guagni, H. J., & Cimbaro, S. R. (2014). *Nuevo ajuste de la red de nivelación de Alta Precisión de la República Argentina*. Presentado en la XXVII Reunión Científica de la Asociación Argentina de Geofísicos y Geodestas, San Juan, Argentina.
- Piñón, D. A., Sánchez, R., & Cimbaro, S. R. (2012). *Nueva compensación de la Red de Nivelación Argentina*. Presentado en la XXVI Reunión Científica de la Asociación Argentina de Geofísicos y Geodestas, San Miguel de Tucumán, Argentina.
- Pugh, D. T. (1996). *Tides, surges and mean sea-level* (reprinted with corrections June 1996 ed.). Chippenham: John Wiley & Sons Ltd.
- Rapp, R. H., & Balasubramania, N. (1992). *A conceptual formulation of a world height system*: Department of Geodetic Science and Surveying, Ohio State University.
- Rummel, R., & Teunissen, P. (1988). Height datum definition, height datum connection and the role of the geodetic boundary value problem. *Bulletin Géodésique, 62*(4), 477-498. doi: 10.1007/BF02520239
- Sánchez, L. (2002). Determinación de alturas físicas en Colombia (Institut für Planetare Geodäsie, Trans.) (pp. 36). Dresden, Alemania: Technische Universität Dresden.

- Sansò, F., & Sideris, M. G. (2013). *Geoid Determination: Theory and Methods* (Vol. 110). Berlin: Springer-Verlag.
- Seeber, G. (2003). *Satellite geodesy: foundations, methods, and applications*: Walter de Gruyter.
- Somigliana, C. (1929). Teoria generale del campo gravitazionale dell'ellissoide di rotazione. *Memorie della Società Astronomica Italiana, 4*, 425.
- Tocho, C. N., Vergos, G. S., & Piñón, D. A. (2015). *W0 determination for Argentinean height system unification*. Presentado en 26th General Assembly of the International Union of Geodesy and Geophysics, Praga, República Checa.
- Torge, W. (2001). *Geodesy* (3rd ed.). Berlin: de Gruyter.
- Vanicek, P. (1991). Vertical datum and NAVD88. *Surveying and Land Information Systems*, 51(2), 83-86.
- Vaníček, P., Kingdon, R., & Santos, M. (2012). Geoid versus quasigeoid: a case of physics versus geometry. *Contributions to Geophysics and Geodesy*, *42*(1), 101-118.
- Vanícek, P., Santos, M., Tenzer, R., & Hernández-Navarro, A. (2003). Algunos aspectos sobre alturas ortométricas y normales. *Revista cartográfica*(76/77), 79.
- Wolf, P. R., & Ghilani, C. D. (2006). *Adjustment Computations: Spatial Data Analysis* (4th ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.
- Xu, G. (2007). *GPS: theory, algorithms and applications*: Springer Science & Business Media.